Skip to main content

Using the Ranking-Based KNN Approach for Drug Repositioning Based on Multiple Information

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9771))

Included in the following conference series:

  • 1908 Accesses

Abstract

Using effective computer methods to infer potential drug-disease relationships can provide clues for the discovery new uses of old drugs. This paper introduced a Ranking-based k-Nearest Neighbor (Re-KNN) method to drug repositioning for cardiovascular diseases. The main characteristic of the Re-KNN lies in combining conventional KNN algorithm with Ranking SVM (Support Vector Machine) algorithm to get neighbors that are more trustable. By integrating the chemical structural similarity, target-based similarity, side-effect similarity and topological similarity information, Re-KNN method can obtain an improved AUC (Area under ROC Curve) and AUPR (Area under Precision-Recall curve) compared with other methods, which prove the validity and efficiency of multiple features integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, C.P., Brantner, V.V.: Estimating the cost of new drug development: is it really $802 million? Health Aff. 25(2), 420–428 (2006)

    Article  Google Scholar 

  2. Ashburn, T.T., Thor, K.B.: Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3(8), 673–683 (2004)

    Article  Google Scholar 

  3. Yang, L., Agarwal, P.: Systematic drug repositioning based on clinical side-effects. PLoS ONE 6(12), e28025 (2011)

    Article  Google Scholar 

  4. Sanseau, P., Agarwal, P., Barnes, M.R., et al.: Use of genome-wide association studies for drug repositioning. Nat. Biotechnol. 30(4), 317–320 (2012)

    Article  Google Scholar 

  5. Clouser, C.L., Patterson, S.E., Mansky, L.M.: Exploiting drug repositioning for discovery of a novel HIV combination therapy. J. Virol. 84(18), 9301–9309 (2010)

    Article  Google Scholar 

  6. Anne, C., James, P., Alistair, B., et al.: Drug repositioning for Alzheimer’s disease. Nat. Rev. Drug Discov. 11(11), 833–846 (2012)

    Article  Google Scholar 

  7. Cheng, F., Liu, C., Jiang, J., et al.: Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8(5), e1002503 (2012)

    Article  Google Scholar 

  8. Alaimo, S., Pulvirenti, A., Giugno, R., et al.: Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics 29(16), 2004–2008 (2013)

    Article  Google Scholar 

  9. Wu, Z., Wang, Y., Chen, L.: Network-based drug repositioning. Mol. BioSyst. 9(6), 1268–1281 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gottlieb, A., Stein, G.Y., Ruppin, E., et al.: Predict: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7, 496 (2011)

    Article  Google Scholar 

  11. Chen, H., Zhang, H., Zhang, Z., et al.: Network-based inference methods for drug repositioning. Comput. Math. Methods Med. 2015, 130620 (2015)

    Google Scholar 

  12. Zhang, P., Agarwal, P., Obradovic, Z.: Computational drug repositioning by ranking and integrating multiple data sources. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190, pp. 579–594. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Wang, Y., Chen, S., Deng, N., et al.: Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS ONE 8(11), e78518 (2013)

    Article  Google Scholar 

  14. Chiang, T.H., Lo, H.Y., Lin, S.D.: A ranking-based KNN approach for multi-label classification. JMLR W&CP. 25, 81–96 (2012)

    Google Scholar 

  15. Yu, H., Kim, J., Kim, Y., et al.: An efficient method for learning nonlinear ranking SVM functions. Inf. Sci. 209, 37–48 (2012)

    Article  MathSciNet  Google Scholar 

  16. Laarhoven, T.V., Marchiori, E.: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS ONE 8(6), e66952 (2013)

    Article  Google Scholar 

  17. Shi, J.Y., Yiu, S.M., Li, Y., et al.: Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering. Methods 83, 98–104 (2015)

    Article  Google Scholar 

  18. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 29–34 (2000)

    Article  Google Scholar 

  19. Yap, C.W.: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 32(7), 1466–1474 (2011)

    Article  MathSciNet  Google Scholar 

  20. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)

    Article  Google Scholar 

  21. Xia, Z., Wu, L.Y., Zhou, X., et al.: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4(Suppl 2), S6 (2010)

    Article  Google Scholar 

  22. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Depatment of Informatics, Aristotle University of Thessaloniki, Greece (2006)

    Google Scholar 

  23. Biggs, R., Hayton-Williams, D.S.: Epsilon-aminocaproic acid in the treatment of hemophilia. Br. Dent. J. 124(124), 157 (1968)

    Google Scholar 

  24. Leduc, L., Dubois, E., Takser, L., et al.: Dalteparin and low-dose aspirin in the prevention of adverse obstetric outcomes in women with inherited thrombophilia. J. Obstet. Gynaecol. Can. 29(10), 787–793 (2007)

    Article  Google Scholar 

  25. Giardini, O., Cantani, A., Donfrancesco, A.: Vitamin E therapy in homozygous beta-thalassemia. N. Engl. J. Med. 305(11), 644 (1981)

    Google Scholar 

  26. Kerr, C.R., Prystowsky, E.N., Smith, W.M., et al.: Disopyramide phosphate in wolff-parkinson-white syndrome. Am. J. Cardiol. 47(2), 495 (1981)

    Article  Google Scholar 

  27. Chaumais, M.C., Perros, F., Dorfmuller, P., et al.: Nilotinib and imatinib therapy in experimental pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol. 32(6), 1354–1365 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Basic Research Program of China (Grants No. 2012CB910400), the Fundamental Research Funds for the Central Universities (78260026), and National Science and Technology Support Plan Project (2015BAH12F01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenran Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tian, X., Xin, M., Luo, J., Jiang, Z. (2016). Using the Ranking-Based KNN Approach for Drug Repositioning Based on Multiple Information. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9771. Springer, Cham. https://doi.org/10.1007/978-3-319-42291-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42291-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42290-9

  • Online ISBN: 978-3-319-42291-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics