Advertisement

SIPSO: Selectively Informed Particle Swarm Optimization Based on Mutual Information to Determine SNP-SNP Interactions

  • Wenxiang Zhang
  • Junliang Shang
  • Huiyu Li
  • Yingxia Sun
  • Jin-Xing Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9771)

Abstract

Interactive effects of Single Nucleotide Polymorphisms (SNPs), namely, SNP-SNP interactions, have been receiving increasing attention in understanding the mechanism underlying susceptibility to complex diseases. Though many works have been done for their detection, the algorithmic development is still ongoing due to their computational complexities. In this study, we apply selectively informed particle swarm optimization (SIPSO) to determine SNP-SNP interactions with mutual information as its fitness function. The highlights of SIPSO are the introductions of scale-free networks as its population structure, and different learning strategies as its interaction modes, considering the heterogeneity of particles. Experiments are performed on both simulation and real data sets, which show that SIPSO is promising in inferring SNP-SNP interactions, and might be an alternative to existing methods. The software package is available online at http://www.bdmb-web.cn/index.php?m=content&c=index&a=show&catid=37&id=99.

Keywords

SNP-SNP interactions Particle swarm optimization Selectively informed Mutual information Scale-free network 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61502272, 61572284, 61572283), the Scientific Research Reward Foundation for Excellent Young and Middle-age Scientists of Shandong Province (BS2014DX004), the Science and Technology Planning Project of Qufu Normal University (xkj201410), the Opening Laboratory Fund of Qufu Normal University (sk201416), the Scientific Research Foundation of Qufu Normal University (BSQD20130119), The Innovation and Entrepreneurship Training Project for College Students of China (201510446044), The Innovation and Entrepreneurship Training Project for College Students of Qufu Normal University (2015A058, 2015A059).

References

  1. 1.
    Maher, B.: The case of the missing heritability. Nature 456(7218), 18–21 (2008)CrossRefGoogle Scholar
  2. 2.
    Yang, C.-H., Chang, H.-W., Cheng, Y.-H., Chuang, L.-Y.: Novel generating protective single nucleotide polymorphism barcode for breast cancer using particle swarm optimization. Cancer Epidemiol. 33(2), 147–154 (2009)CrossRefGoogle Scholar
  3. 3.
    Chang, H.-W., Yang, C.-H., Ho, C.-H., Wen, C.-H., Chuang, L.-Y.: Generating SNP barcode to evaluate SNP–SNP interaction of disease by particle swarm optimization. Comput. Biol. Chem. 33(1), 114–119 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chuang, L.-Y., Lin, M.-C., Chang, H.-W., Yang, C.-H.: Analysis of SNP interaction combinations to determine breast cancer risk with PSO. In: 2011 IEEE 11th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 291–294. IEEE (2011)Google Scholar
  5. 5.
    Chuang, L.-Y., Chang, H.-W., Lin, M.-C., Yang, C.-H.: Chaotic particle swarm optimization for detecting SNP–SNP interactions for CXCL12-related genes in breast cancer prevention. Eur. J. Cancer Prev. 21(4), 336–342 (2012)CrossRefGoogle Scholar
  6. 6.
    Chuang, L.-Y., Lin, Y.-D., Chang, H.-W., Yang, C.-H.: An improved PSO algorithm for generating protective SNP barcodes in breast cancer. PLOS One 7(5), e37018 (2012)CrossRefGoogle Scholar
  7. 7.
    Chuang, L.-Y., Lin, Y.-D., Chang, H.-W., Yang, C.-H.: SNP-SNP interaction using gauss chaotic map particle swarm optimization to detect susceptibility to breast cancer. In: 2014 47th Hawaii International Conference on System Sciences (HICSS), pp. 2548–2554. IEEE (2014)Google Scholar
  8. 8.
    Yang, C.-H., Tsai, S.-W., Chuang, L.-Y., Yang, C.-H.: An improved particle swarm optimization with double-bottom chaotic maps for numerical optimization. Appl. Math. Comput. 219(1), 260–279 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Yang, C.-H., Lin, Y.-D., Chuang, L.-Y., Chang, H.-W.: Double-bottom chaotic map particle swarm optimization based on chi-square test to determine gene-gene interactions. BioMed Res. Int. 2014, 10 (2014)Google Scholar
  10. 10.
    Hwang, M.-L., Lin, Y.-D., Chuang, L.-Y., Yang, C.-H.: Determination of the SNP-SNP interaction between breast cancer related genes to analyze the disease susceptibility. Int. J. Mach. Learn. Comput. 4(5), 468–473 (2014)CrossRefGoogle Scholar
  11. 11.
    Wu, S.-J., Chuang, L.-Y., Lin, Y.-D., Ho, W.-H., Chiang, F.-T., Yang, C.-H., Chang, H.-W.: Particle swarm optimization algorithm for analyzing SNP–SNP interaction of renin-angiotensin system genes against hypertension. Mol. Biol. Rep. 40(7), 4227–4233 (2013)CrossRefGoogle Scholar
  12. 12.
    Ma, C., Shang, J., Li, S., Sun, Y.: Detection of SNP-SNP interaction based on the generalized particle swarm optimization algorithm. In: 2014 8th International Conference on Systems Biology (ISB), pp. 151–155. IEEE (2014)Google Scholar
  13. 13.
    Shang, J., Sun, Y., Li, S., Liu, J.-X., Zheng, C.-H., Zhang, J.: An improved opposition-based learning particle swarm optimization for the detection of SNP-SNP interactions. BioMed Res. Int. 2015, 12 (2015)Google Scholar
  14. 14.
    Gao, Y., Du, W., Yan, G.: Selectively-informed particle swarm optimization. Scientific reports 5 (2015)Google Scholar
  15. 15.
    Liu, C., Du, W.B., Wang, W.X.: Particle swarm optimization with scale-free interactions. PLOS One 9(5), e97822 (2014)CrossRefGoogle Scholar
  16. 16.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, Y., Liu, J.S.: Bayesian inference of epistatic interactions in case-control studies. Nat. Genet. 39(9), 1167–1173 (2007)CrossRefGoogle Scholar
  18. 18.
    Tang, W., Wu, X., Jiang, R., Li, Y.: Epistatic module detection for case-control studies: a Bayesian model with a Gibbs sampling strategy. PLoS Genet. 5(5), e1000464 (2009)CrossRefGoogle Scholar
  19. 19.
    Frankel, W.N., Schork, N.J.: Who’s afraid of epistasis? Nat. Genet. 14(4), 371–373 (1996)CrossRefGoogle Scholar
  20. 20.
    Li, W., Reich, J.: A complete enumeration and classification of two-locus disease models. Hum. Hered. 50(6), 334–349 (2000)CrossRefGoogle Scholar
  21. 21.
    Shang, J., Zhang, J., Sun, Y., Liu, D., Ye, D., Yin, Y.: Performance analysis of novel methods for detecting epistasis. BMC Bioinform. 12(1), 475 (2011)CrossRefGoogle Scholar
  22. 22.
    Shang, J., Zhang, J., Lei, X., Zhao, W., Dong, Y.: EpiSIM: simulation of multiple epistasis, linkage disequilibrium patterns and haplotype blocks for genome-wide interaction analysis. Genes Genomics 35, 305–316 (2013)CrossRefGoogle Scholar
  23. 23.
    Shang, J., Zhang, J., Lei, X., Zhang, Y., Chen, B.: Incorporating heuristic information into ant colony optimization for epistasis detection. Genes Genomics 34(3), 321–327 (2012)CrossRefGoogle Scholar
  24. 24.
    Shang, J., Zhang, J., Sun, Y., Zhang, Y.: EpiMiner: a three-stage co-information based method for detecting and visualizing epistatic interactions. Digit. Signal Process. 24, 1–13 (2014)CrossRefGoogle Scholar
  25. 25.
    Shang, J., Sun, Y., Fang, Y., Li, S., Liu, J.-X., Zhang, Y.: Hypergraph supervised search for inferring multiple epistatic interactions with different orders. In: Huang, D.-S., Jo, K.-H., Hussain, A. (eds.) ICIC 2015. LNCS, vol. 9226, pp. 623–633. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  26. 26.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  27. 27.
    Adams, M.K., Simpson, J.A., Richardson, A.J., Guymer, R.H., Williamson, E., Cantsilieris, S., English, D.R., Aung, K.Z., Makeyeva, G.A., Giles, G.G.: Can genetic associations change with age? CFH and age-related macular degeneration. Hum. Mol. Genet. 21(23), 5229–5236 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wenxiang Zhang
    • 1
  • Junliang Shang
    • 1
    • 2
  • Huiyu Li
    • 1
  • Yingxia Sun
    • 1
  • Jin-Xing Liu
    • 1
  1. 1.School of Information Science and EngineeringQufu Normal UniversityRizhaoChina
  2. 2.Institute of Network ComputingQufu Normal UniversityRizhaoChina

Personalised recommendations