Thin-Walled Structural Elements: Classification, Classical and Advanced Theories, New Applications

  • Holm AltenbachEmail author
  • Victor Eremeyev
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 572)


Thin structures were existing from the ancient time. From observations of the nature the people understood that thinner means lighter, but stiffness and stability problems arose. This was the starting point for the elaboration of theories analyzing these structures. At that time applications were limited to civil engineering. At present they are used in aerospace engineering as basic elements. Such structures are applied as a model of analysis in other branches too, e.g. mechanical engineering. With the necessity to substitute classical material by new (advanced) materials—instead of steel or concrete, now laminates, foams, nano-films, biological membranes, etc. are used. The new trends in applications demand improvements of the theoretical foundations of the plate and shell theories, since new effects (for example, transverse shear or surface effects) must be taken into account. This contribution is mainly an introduction to the CISM-Course SHELL-LIKE STRUCTURES: ADVANCED THEORIES AND APPLICATIONS. After some introduction to the history some examples concerning new applications are discussed. After that main directions in the theory of plates and shells are presented. Finally, various advanced theories are briefly introduced. Other advanced theories are presented in the following chapter.


Surface Stress Plate Theory Relaxation Function Shell Theory Stiffness Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altenbach, H. (1988). Eine direkt formulierte lineare Theorie für viskoelastische Platten und Schalen. Ing.-Arch., 58, 215–228.CrossRefzbMATHGoogle Scholar
  2. Altenbach, H. (2000). An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. International Journal of Solid and Structure, 37(25), 3503–3520.CrossRefzbMATHGoogle Scholar
  3. Altenbach, H., & Eremeyev, V. A. (2008). Analysis of the viscoelastic behavior of plates made of functionally graded materials. ZAMM, 88(5), 332–341.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Altenbach, H., & Eremeyev, V. A. (2009). On the bending of viscoelastic plates made of polymer foams. Acta Mechanica, 204(3–4), 137–154.CrossRefzbMATHGoogle Scholar
  5. Altenbach, H., & Eremeyev, V. A. (2011). Shell-like Structures: Non-classical Theories and Applications., Advanced Structured Materials Berlin, Heidelberg: Springer Science & Business Media.CrossRefGoogle Scholar
  6. Altenbach, H., & Mikhasev, G. (2014). Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures., Advanced Structured Materials Cham: Springer.zbMATHGoogle Scholar
  7. Altenbach, H., Eremeyev, V. A., & Morozov, N. F. (2009). Linear theory of shells taking into account surface stresses. Doklady Physics, 54(12), 531–535.CrossRefGoogle Scholar
  8. Altenbach, H., Eremeev, V. A., & Morozov, N. F. (2010a). On equations of the linear theory of shells with surface stresses taken into account. Mechanics of Solids, 45(3), 331–342.CrossRefGoogle Scholar
  9. Altenbach, H., Eremeyev, V. A., & Morozov, N. F. (2012). Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. International Journal of Engineering Science, 59, 83–89.MathSciNetCrossRefGoogle Scholar
  10. Altenbach, H., Altenbach, J., & Naumenko, K. (2016). Ebene Flächentragwerke (2nd ed.). Cham: Springer.Google Scholar
  11. Altenbach, J., Altenbach, H., & Eremeyev, V. A. (2010b). On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Archive of Applied Mechanics, 80(1), 73–92.CrossRefzbMATHGoogle Scholar
  12. Ambarcumyan, S. A. (1991). Theory of Anisotropic Plates: Strength, Stability, and Vibrations. Washington: Hemispher Publishing.Google Scholar
  13. Aron, H. (1874). Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten elastischen Schale. Journal für die reine und angewandte Mathematik, 78, 136–174.MathSciNetGoogle Scholar
  14. Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J. W., Wadley, H. N. G., & Gibson, L. J. (2000). Metal Foams: A Design Guide. Boston: Butterworth-Heinemann.Google Scholar
  15. Başar, Y., & Krätzig, W. B. (1985). Mechanik der Flächentragwerke. Braunschweig/Wiesbaden: Vieweg.Google Scholar
  16. Becchi, A., Corradi, M., Foce, F., & Pedemonte, O. (Eds.). (2003). Essays on the History of Mechanics—In Memory of Clifford Ambrose Truesdell and Edoardo Benvenuto. Basel: Birkhäuser.Google Scholar
  17. Christensen, R. M. (1971). Theory of Viscoelasticity. An Introduction. New York: Academic Press.Google Scholar
  18. Chróścielewski, J., Makowski, J., & Pietraszkiewicz, W. (2004). Statics and Dynamics of Multifolded Shells. Nonlinear therory and Finite Element Method. Warsaw: IPPT PAN.Google Scholar
  19. Ciarlet, P. G. (1980). A justification of the von Kármán equations. The Archive for Rational Mechanics and Analysis, 73(4), 349–389.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Ciarlet, P. G. (1990). Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis., Collection Recherches en Mathématiques Appliquées Paris: Masson.zbMATHGoogle Scholar
  21. Cosserat, E., & Cosserat, F. (1909). Théorie des corps déformables. Paris: Herman et Fils.zbMATHGoogle Scholar
  22. Donnel, L. H. (1976). Beams, Plates, and Shells., Engineering Societies Monographs Series New York: McGraw-Hill.Google Scholar
  23. Drozdov, A. D. (1996). Finite Elasticity and Viscoelasticity. Singapore: World Scientific.CrossRefzbMATHGoogle Scholar
  24. Duan, H. L., Wang, J., & Karihaloo, B. L. (2008). Theory of elasticity at the nanoscale. Advances in Applied Mechanics (pp. 1–68). San Diego: Elsevier.Google Scholar
  25. Eremeyev, V. A., Altenbach, H., & Morozov, N. F. (2009). The influence of surface tension on the effective stiffness of nanosize plates. Doklady Physics, 54(2), 98–100.CrossRefzbMATHGoogle Scholar
  26. Finn, R. (1986). Equilibrium Capillary Surfaces. New-York: Springer.CrossRefzbMATHGoogle Scholar
  27. Föppl, A. (1907). Vorlesungen über technische Mechanik (Vol. 5). Leipzig: B.G. Teubner.zbMATHGoogle Scholar
  28. Gibbs, J. W. (1928). On the equilibrium of heterogeneous substances. The Collected Works of J. Willard Gibbs (pp. 55–353). New York: Longmans, Green & Co.Google Scholar
  29. Gibson, L. J., & Ashby, M. F. (1997). Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  30. Gol’denveizer, A. L. (1962). Derivation of an approximate theory of bending of a plate by the methods of asymptotic integration of the equations of the theory of elasticity. Prikl. Matem. Mekh., 26(4), 1000–1025.MathSciNetGoogle Scholar
  31. Gol’denveizer, A. L. (1963). Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity. Prikl. Matem. Mekh., 27(4), 903–924.MathSciNetGoogle Scholar
  32. Grigolyuk, E. I., & Seleznev, I. T. (1973). Nonclassical Theories of Oscillations of Rods, Plates, and Shells., togi Nauki i Tekhniki. Ser. Mekh. Tverdogo Deformir. Tela Moscow: VINITI.Google Scholar
  33. Gurtin, M. E., & Murdoch, A. I. (1975a). A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291–323.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Gurtin, M. E., & Murdoch, A. I. (1975b). Addenda to our paper A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 59(4), 389–390.MathSciNetCrossRefzbMATHGoogle Scholar
  35. Huang, D. W. (2008). Size-dependent response of ultra-thin films with surface effects. International Journal of Solids and Structures, 45(2), 568–579.CrossRefzbMATHGoogle Scholar
  36. Jaiani, G., Podio-Guidugli, P. (2008). IUTAM Symposium on Relations of Shell, Plate, Beam and 3D Models: Proceedings of the IUTAM Symposium on the Relations of Shell, Plate, Beam, and 3D Models Dedicated to the Centenary of Ilia Vekua’s Birth, held Tbilisi, Georgia, April 23–27, 2007, Vol. 9. Springer Science & Business Media.Google Scholar
  37. Kienzler, R. (2002). On consistent plate theories. Archive of Applied Mechanics, 72, 229–247.CrossRefzbMATHGoogle Scholar
  38. Kienzler, R., & Schneider, P. (2016). Direct approach versus consistent theory. In K. Naumenko & M. Aßmus (Eds.), Advances Methods of Continuum Mechanics for Materials and Structures (Vol. 60, pp. 415–433)., Advanced Structured Materials Singapore: Springer.CrossRefGoogle Scholar
  39. Kienzler, R., Altenbach, H., & Ott, I. (2003). Theories of Plates and Shells: Critical Review and New Applications., Lecture Notes in Applied and Computational Mechanics Berlin, Heidelberg: Springer.zbMATHGoogle Scholar
  40. Kirchhoff, G. (1883). Vorlesungen über Mathematische Physik (3rd ed.). Leipzig: B. G. Teubner.zbMATHGoogle Scholar
  41. Kirchhoff, G. R. (1850). Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Crelles Journal für die reine und angewandte Mathematik, 40, 51–88.MathSciNetCrossRefGoogle Scholar
  42. Kurrer, K.-E. (2008). The History of the Theory of Structures., From Arch Analysis to Computational Mechanics Berlin: Ernst & Sohn.CrossRefGoogle Scholar
  43. Lakes, R. S. (1992). The time-dependent Poisson’s ratio of viscoelastic materials can increase or decrease. Cellular Polymers, 11, 466–469.Google Scholar
  44. Lakes, R. S., & Wineman, A. (2006). On Poisson’s ratio in linearly viscoelastic solids. Journal of Elasticity, 85, 45–63.MathSciNetCrossRefzbMATHGoogle Scholar
  45. Laplace, P. S. (1805). Sur l’action capillaire. supplément à la théorie de l’action capillaire. Traité de mécanique céleste (Vol. 4, pp. 771–777)., Supplement 1, livre X Paris: Gauthier-Villars et fils.Google Scholar
  46. Laplace, P. S. (1806). À la théorie de l’action capillaire. supplément à la théorie de l’action capillaire. Traité de mécanique céleste (Vol. 4, pp. 909–945)., Supplement 2, Livre X Paris: Gauthier-Villars et fils.Google Scholar
  47. Lebedev, L. P., Cloud, M. J., & Eremeyev, V. A. (2010). Tensor Analysis with Applications in Mechanics. New Jersey: World Scientific.CrossRefzbMATHGoogle Scholar
  48. Léwinski, T. (1987). On refined plate models based on kinematical assumptions. Ing.-Arch., 57, 133–146.CrossRefzbMATHGoogle Scholar
  49. Libai, A., & Simmonds, J. G. (1998). The Nonlinear Theory of Elastic Shells (2nd ed.). Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  50. Lo, K. H., Christensen, R. M., & Wu, E. M. (1977). A higher-order theory of plate deformation, part 1: Homogeneous plates. Journal of Applied Mechanics Transactions of the ASME, 44, 663–668.CrossRefzbMATHGoogle Scholar
  51. Love, A. E. H. (1906). A Treatise on the Mathematical Theory of Elasticity (2nd ed.). Cambridge: University Press.zbMATHGoogle Scholar
  52. Lu, P., He, L. H., Lee, H. P., & Lu, C. (2006). Thin plate theory including surface effects. International Journal of Solids and Structures, 43(16), 4631–4647.CrossRefzbMATHGoogle Scholar
  53. Lurie, A. I. (1947). Statics of the Thin Elastic Shells (in Russ.). Moscow: Gostekhizdat.Google Scholar
  54. Lurie, A. I. (1961). On the static-geometric analogy of the theory of shells. Muschilishvili Anniversary Volume. Philadelphia: SIAM.Google Scholar
  55. Lurie, A. I. (2005). Theory of Elasticity., Foundations of Engineering Mechanics Berlin: Springer.CrossRefGoogle Scholar
  56. Maugin, G. (2013). Continuum Mechanics Through the Twentieth Century. Cham: Springer.CrossRefzbMATHGoogle Scholar
  57. Meenen, J., & Altenbach, H. (2001). A consistent deduction of von Kármán-type plate theories from threedimensional non-linear continuum mechanics. Acta Mechanica, 147, 1–17.CrossRefzbMATHGoogle Scholar
  58. Mindlin, R. D. (1951). Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. Journal of Applied Mechanics Transactions of the ASME, 18, 31–38.zbMATHGoogle Scholar
  59. Mushtari, K. M., & Galimov, K. Z. (1961). Nonlinear Theory of Thin Elastic Shells. Washington: NSF-NASA.Google Scholar
  60. Naghdi, P. M. (1972). The Theory of Shells and Plates. In S. Flügge (Ed.), Handbuch der Physik (pp. 425–640)., volume VIa/2 New York: Springer.Google Scholar
  61. Novozhilov, V. V. (1959). The Theory of Thin Shells. Groningen: Noordhoff.zbMATHGoogle Scholar
  62. Nye, J. F. (2000). Physical Properties of Crystals, their Representation by Tensors und Matrices. Claradon: Oxford, reprint edition.zbMATHGoogle Scholar
  63. Orowan, E. (1970). Surface energy and surface tension in solids and fluids. Proceedings of the Royal Society of London A, 316(1527), 473–491.CrossRefGoogle Scholar
  64. Panc, V. (1975). Theories of Elastic Plates. Leyden: Nordhoff Int. Publ.CrossRefzbMATHGoogle Scholar
  65. Pietraszkiewicz, W. (1979). Finite Rotations and Langrangian Description in the Non-linear Theory of Shells. Warszawa-Poznań: Polish Scientific Publishers.zbMATHGoogle Scholar
  66. Podio-Guidugli, P. (2003). A new quasilinear model for plate buckling. Journal of Elasticity, 71, 157–182.MathSciNetCrossRefzbMATHGoogle Scholar
  67. Podstrigach, Y. S., & Povstenko, Y. Z. (1985). Introduction to Mechanics of Surface Phenomena in Deformable Solids (in Russ.). Kiev: Naukova Dumka.zbMATHGoogle Scholar
  68. Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics Transactions of the ASME, 51(4), 745–752.CrossRefzbMATHGoogle Scholar
  69. Reddy, J. N. (2007). Theory and Analysis of Elastic Plates and Shells (2nd ed.). Boca Raton: CRC Press.Google Scholar
  70. Reddy, J. N. (2004). Mechanics of Laminated Composite Plates: Theory and Analysis (2nd ed.). Boca Raton: CRC Press.zbMATHGoogle Scholar
  71. Reissner, E. (1944). On the theory of bending of elastic plates. Journal of Mathematics and Physics, 23, 184–191.MathSciNetCrossRefzbMATHGoogle Scholar
  72. Reissner, E. (1985). Reflection on the theory of elastic plates. Applied Mechanics Review, 38(11), 1453–1464.CrossRefGoogle Scholar
  73. Ritz, W. (1908). Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. Journal für die reine und angewandte Mathematik, 135, 1–61.MathSciNetGoogle Scholar
  74. Rothert, H. (1973). Direkte Theorie von Linien- und Flächentragwerken bei viskoelastischen Werkstoffverhalten. Techn.-Wiss. Mitteilungen des Instituts für Konstruktiven Ingenieurbaus 73-2, Ruhr-Universität, BochumGoogle Scholar
  75. Rusanov, A. I. (2005a). Thermodynamics of solid surfaces. Surface Science Reports, 23(6–8), 173–247.Google Scholar
  76. Rusanov, A. I. (2005b). Surface thermodynamics revisited. Surface Science Reports, 58(5–8), 111–239.CrossRefGoogle Scholar
  77. Schneider, P., & Kienzler, R. (2011). An algorithm for the automatisation of pseudo reductions of PDE systems arising from the uniform-approximation technique. In H. Altenbach & V. A. Eremeyev (Eds.), Shell-like Structures: Non-classical Theories and Applications (pp. 377–390). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  78. Schneider, P., Kienzler, R., & Böhm, M. (2014). Modeling of consistent second-order plate theories for anisotropic materials. ZAMM—Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 94(1–2), 21–42.MathSciNetCrossRefzbMATHGoogle Scholar
  79. Steigmann, D. J., & Ogden, R. W. (1999). Elastic surface-substrate interactions. Proc. R. Soc. London, Ser. A—Math. Phys. Engg. Sci., 455(1982), 437–474.MathSciNetCrossRefzbMATHGoogle Scholar
  80. Strutt, J. W. (1877). The Theory of Sound (Vol. 1). London: MacMillan and Co.Google Scholar
  81. Timoshenko, S. P. (1953). History of Strength of Materials. New York: McGraw-Hill.Google Scholar
  82. Timoshenko, S. P. (1921). On the correnction for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine Series 6(245), 41, 744–746.CrossRefGoogle Scholar
  83. Timoshenko, S. P., & Woinowsky-Krieger, S. (1985). Theory of Plates and Shells. New York: McGraw Hill.zbMATHGoogle Scholar
  84. Todhunter, I., & Pearson, K. (1960). A History of the Theory of Elasticity and of the Strength of Materials: from Galilei to Lord Kelvin. New York: Dover.zbMATHGoogle Scholar
  85. Truesdell, C. A. (1964). Die Entwicklung des Drallsatzes. ZAMM, 44(4/5), 149–158.MathSciNetCrossRefzbMATHGoogle Scholar
  86. Truesdell, C. (1978). Comments on rational continuum mechanics. In G. M. de la Penha & L. A. Medeiros (Eds.), Contemporary Developments in Continuum Mechanics and Partial Differential Equations (pp. 495–603). North-Holland, Amsterdam.Google Scholar
  87. Tschoegl, N. W. (1989). The Phenomenological Theory of Linear Viscoelastic Behavior. An Introduction. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  88. van der Heijden, A.M.A. (1976). On modified boundary conditions for the free edge of a shell. Ph.D. thesis, TH Delft, Delft.Google Scholar
  89. Vekua, I. N. (1955). On one method of calculating prismatic shells (in Russ.). Trudy Tbilis. Mat. Inst., 21, 191–259.MathSciNetGoogle Scholar
  90. Vekua, I. N. (1985). Shell Theory: General Methods of Construction. Boston-London-Melbourne: Advanced Publishing Program. Pitman Advanced Publishing Program.zbMATHGoogle Scholar
  91. Vlachoutsis, S. (1992). Shear correction factors for plates and shells. International Journal for Numerical Methods in Engineering, 33, 1537–1552.CrossRefzbMATHGoogle Scholar
  92. Vlasov, V. Z. (1949). General Theory for Shells and its Application in Engineering (in Russ.). Moscow: Gostekhizdat.Google Scholar
  93. von Kármán, T. (1910). Festigkeitsprobleme im Maschinenbau. Encyklopdie der Mathematischen Wissenschaften (pp. 311–385). Leipzig: B.G. Teubner.Google Scholar
  94. Wang, C. M., Reddy, J. N., & Lee, K. H. (2000). Shear Deformation Theories of Beams and Plates Dynamics Relationships with Classical Solution. London: Elsevier.Google Scholar
  95. Wlassow, W. S. (1958). Allgemeine Schalentheorie und ihre Anwendung in der Technik. Berlin: Akademie-Verlag.zbMATHGoogle Scholar
  96. Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65–87.CrossRefGoogle Scholar
  97. Zhilin, P. A. (1976). Mechanics of deformable directed surfaces. International Journal of Solids and Structures, 12, 635–648.MathSciNetCrossRefGoogle Scholar
  98. Zhilin, P. A. (1992). On the theories of Poisson and Kirchhoff from the point of view of modern plate theories (in Russ.). Mekhanika Tverdogo Tela (Mechanics of Solids), 3, 49–64.Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2017

Authors and Affiliations

  1. 1.Chair of Engineering Mechanics, Faculty of Mechanical EngineeringOtto-von-Guericke-University MagdeburgMagdeburgGermany
  2. 2.Department of Mechanical Engineering and AvionicsRzeszów University of TechnologyPodkarpaciePoland
  3. 3.South Scientific Center of Russian Academy of ScienceRostov on DonRussia
  4. 4.Department of Mathematics, Mechanics and Computer ScienceSouth Federal UniversityRostov on DonRussia

Personalised recommendations