Enhancement of Chiral Fields by Geometrically Chiral Structures

  • Martin SchäferlingEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 205)


It is expected that geometrically chiral plasmonic nanostructures can enhance the intrinsic optical chirality of circularly polarized light. Therefore, we analyze the chiral near-field response of different chiral nanostructures illuminated with circularly polarized light in this chapter. We show that properly designed planar geometrically chiral nanostructures can result in a natural spatial separation of chiral near-fields with opposite handedness. Three-dimensional geometrically chiral nanostructures, on the other hand, interact strongest with one preferred handedness of the incident light and can lead to chiral hot-spots, where particularly high optical chirality occurs. Based on these findings, we provide basic design principles for chiral plasmonic near-field sources based on geometrically chiral nanostructures.


Incident Polarization Chiral Structure Plasmonic Nanostructures Polarization Conversion Particle Plasmon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Novotny, B. Hecht, Principles of Nano-Optics, 2nd edn. (Cambridge University Press, Cambridge, 2012)CrossRefGoogle Scholar
  2. 2.
    S. Takahashi, A. Potts, D. Bagnall, N. Zheludev, A. Zayats, Near-field polarization conversion in planar chiral nanostructures. Opt. Commun. 255, 91 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, M. Kuwata-Gonokami, Circularly polarized light emission from semiconductor planar chiral nanostructures. Phys. Rev. Lett. 106, 057402 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    E. Hendry, T. Carpy, J. Johnston, M. Popland, R.V. Mikhaylovskiy, A.J. Lapthorn, S.M. Kelly, L.D. Barron, N. Gadegaard, M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    J.K. Gansel, M. Wegener, S. Burger, S. Linden, Gold helix photonic metamaterials: a numerical parameter study. Opt. Express 18, 1059 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    N. Liu, H. Liu, S. Zhu, H. Giessen, Stereometamaterials. Nat. Photon. 3, 157 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    H. Liu, J.X. Cao, S.N. Zhu, N. Liu, R. Ameling, H. Giessen, Lagrange model for the chiral optical properties of stereometamaterials. Phys. Rev. B 81, 241403 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    D.A. Powell, K. Hannam, I.V. Shadrivov, Y.S. Kivshar, Near-field interaction of twisted split-ring resonators. Phys. Rev. B 83, 235420 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.4th Physics InstituteUniversity of StuttgartStuttgartGermany

Personalised recommendations