Chiroptical Spectroscopy

  • Martin SchäferlingEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 205)


The handedness of chiral molecules is crucial for chemical processes. The chiral properties of such molecules can be studied with chiroptical spectroscopy techniques. However, their sensitivity is limited. In this chapter, we discuss the physical principles behind such techniques. A strong focus lays on circular dichroism spectroscopy, which is the most common method for chiroptical investigations. After this introduction, we discuss methods to improve the sensitivity of such measurement schemes. Plasmonic enhancement schemes, where molecules are electromagnetically coupled to plasmonic nanostructures, are reviewed in detail. We discuss different enhancement mechanisms for single nanoparticles as well as nanoparticle clusters. Additionally, novel schemes where the chiral analyte induces the formation of chiral plasmonic nanoassemblies, which then act as reporters for the chiral analyte, are reviewed.


Silver Nanoparticles Circular Dichroism Chiral Molecule Circular Dichroism Signal Vibrational Circular Dichroism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W.C. Johnson Jr., Circular Dichroism Instrumentation, eds. by G.D. Fasman. Circular Dichroism and the Conformational Analysis of Biomolecules (Plenum Press, New York, 1996)Google Scholar
  2. 2.
    J.C. Sutherland, Measurement of the Circular Dichroism of Electronic Transitions, eds. N. Berova, P.L. Polavarapu, K. Nakanishi, R.W. Woody. Comprehensive Chiroptical Spectroscopy. Instrumentation, Methodologies, and Theoretical Simulations, vol. 1 (Wiley, Hoboken, 2012)Google Scholar
  3. 3.
    N.J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876 (2006)CrossRefGoogle Scholar
  4. 4.
    C. Guo, R.D. Shah, R.K. Dukor, T.B. Freedman, X. Cao, L.A. Nafie, Fourier transform vibrational circular dichroism from 800 to 10,000 cm\(^{-1}\): Near-IR-VCD spectral standards for terpenes and related molecules. Vib. Spectrosc. 42, 254 (2006)CrossRefGoogle Scholar
  5. 5.
    W.C. Johnson, Secondary structure of proteins through circular dichroism spectroscopy. Annu. Rev. Biophys. Biophys. Chem. 17, 145 (1988)CrossRefGoogle Scholar
  6. 6.
    W.C. Johnson, Protein secondary structure and circular dichroism: a practical guide. Proteins 7, 205 (1990)CrossRefGoogle Scholar
  7. 7.
    S.M. Kelly, T.J. Jess, N.C. Price, How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119 (2005)CrossRefGoogle Scholar
  8. 8.
    P.L. Polavarapu, Renaissance in chiroptical spectroscopic methods for molecular structure determination. Chem. Rec. 7, 125 (2007)CrossRefGoogle Scholar
  9. 9.
    L.A. Nafie, Vibrational Optical Activity: Principles and Applications (Wiley-VCH, New York, 2011)CrossRefGoogle Scholar
  10. 10.
    K.-P. Wong, Optical rotary dispersion and circular dichroism. J. Chem. Educ. 51, A573 (1974)CrossRefGoogle Scholar
  11. 11.
    P.H. Vaccaro, Optical Rotation and Intrinsic Optical Activity, eds. by N. Berova, P.L. Polavarapu, K. Nakanishi, R.W. Woody. Comprehensive Chiroptical Spectroscopy. Instrumentation, Methodologies, and Theoretical Simulations, vol. 1 (Wiley, Hoboken, 2012)Google Scholar
  12. 12.
    J.P. Riehl, F.S. Richardson, Circularly polarized luminescence spectroscopy. Chem. Rev. 86, 1 (1986)CrossRefGoogle Scholar
  13. 13.
    J.P. Riehl, G. Muller, Circularly Polarized Luminescence Spectroscopy and Emmision-Detected Circular Dichroism, eds. by N. Berova, P.L. Polavarapu, K. Nakanishi, R.W. Woody. Comprehensive Chiroptical Spectroscopy. Instrumentation, Methodologies, and Theoretical Simulations, vol. 1 (Wiley, Hoboken, 2012)Google Scholar
  14. 14.
    D.H. Turner, I. Tinoco, M. Maestre, Fluorescence detected circular dichroism. J. Am. Chem. Soc. 96, 4340 (1974)CrossRefGoogle Scholar
  15. 15.
    I. Tinoco, D.H. Turner, Fluorescence detected circular dichroism. Theory. J. Am. Chem. Soc. 98, 6453 (1976)CrossRefGoogle Scholar
  16. 16.
    L.D. Barron, F. Zhu, L. Hecht, G.E. Tranter, N.W. Isaacs, Raman optical activity: An incisive probe of molecular chirality and biomolecular structure. J. Mol. Struct. 834–836, 7 (2007)CrossRefGoogle Scholar
  17. 17.
    W. Hug, Measurement of Raman Optical Activity, eds. by N. Berova, P.L. Polavarapu, K. Nakanishi, R.W. Woody. Comprehensive Chiroptical Spectroscopy. Instrumentation, Methodologies, and Theoretical Simulations, vol. 1 (Wiley, Hoboken, 2012)Google Scholar
  18. 18.
    H. Rhee, J.S. Choi, D.J. Starling, J.C. Howell, M. Cho, Amplifications in chiroptical spectroscopy, optical enantioselectivity, and weak value measurement. Chem. Sci. 4, 4107 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Aharonov, D. Albert, L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    B. Tamir, E. Cohen, Introduction to weak measurements and weak values. Quanta 2, 7 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Pfeifer, P. Fischer, Weak value amplified optical activity measurements. Opt. Express 19, 16508 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    S. Bassiri, C.H. Papas, N. Engheta, Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab. J. Opt. Soc. Am. A 5, 1450 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    R.A. Goldbeck, D.B. Kim-Shapiro, D.S. Kliger, Fast natural and magnetic circular dichroism spectroscopy. Annu. Rev. Phys. Chem. 48, 453 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z.H. Kim, S.-J. Jeon, M. Cho, Femtosecond characterization of vibrational optical activity of chiral molecules. Nature 458, 310 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    D. Sofikitis, L. Bougas, G.E. Katsoprinakis, A.K. Spiliotis, B. Loppinet, T.P. Rakitzis, Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry. Nature 514, 76 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    S. Yoo, Q.-H. Park, Chiral light-matter interaction in optical resonators. Phys. Rev. Lett. 114, 203003 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    J. Aizpurua, G.W. Bryant, L.J. Richter, F.J. Garciìa de Abajo, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B 71, 235420 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. Garciìa-Etxarri, J. Aizpurua, Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101, 157403 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    A. Pucci, F. Neubrech, J. Aizpurua, T. Cornelius, M. Lamy de la Chapelle, Electromagnetic nanowire resonances for field-enhanced spectroscopies, ed. by Z.M. Wang. One-Dimensional Nanostructures, Lecture Notes in Nanoscale Science and Technology, vol. 3 (Springer, New York, 2008)Google Scholar
  30. 30.
    A.E. Schlather, N. Large, A.S. Urban, P. Nordlander, N.J. Halas, Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett. 13, 3281 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    A.O. Govorov, Y.K. Gun’ko, J.M. Slocik, V.A. Gérard, Z. Fan, R.R. Naik, Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J. Mater. Chem. 21, 16806 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Ben-Moshe, B.M. Maoz, A.O. Govorov, G. Markovich, Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 42, 7028 (2013)CrossRefGoogle Scholar
  33. 33.
    C. Noguez, I.L. Garzón, Optically active metal nanoparticles. Chem. Soc. Rev. 38, 757 (2009)CrossRefGoogle Scholar
  34. 34.
    I. Lieberman, G. Shemer, T. Fried, E.M. Kosower, G. Markovich, Plasmon-resonance-enhanced absorption and circular dichroism. Angew. Chemie Int. Ed. 47, 4855 (2008)CrossRefGoogle Scholar
  35. 35.
    A.O. Govorov, Z. Fan, P. Hernandez, J.M. Slocik, R.R. Naik, Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    J.M. Slocik, A.O. Govorov, R.R. Naik, Plasmonic circular dichroism of Peptide-functionalized gold nanoparticles. Nano Lett. 11, 701 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    J.M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J.M. Saiz, F. González, A.S. Brown, M. Losurdo, H.O. Everitt, F. Moreno, UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects. J. Phys. Chem. C 117, 19606 (2013)CrossRefGoogle Scholar
  38. 38.
    D.V. Chulhai, L. Jensen, Plasmonic circular dichroism of 310- and \(\alpha \)-helix using a discrete interaction model/quantum mechanics method. J. Phys. Chem. A 119, 5218 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Yoo, Q.-H. Park, Enhancement of chiroptical signals by circular differential mie scattering of nanoparticles. Sci. Rep. 5, 14463 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    P. Rezanka, K. Záruba, V. Král, Supramolecular chirality of cysteine modified silver nanoparticles. Colloids Surf A Physicochem. Eng. Asp. 374, 77 (2011)CrossRefGoogle Scholar
  41. 41.
    M. Kobayashi, S. Tomita, K. Sawada, K. Shiba, H. Yanagi, I. Yamashita, Y. Uraoka, Chiral meta-molecules consisting of gold nanoparticles and genetically engineered tobacco mosaic virus. Opt. Express 20, 24856 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    T. Harada, N. Kajiyama, K. Ishizaka, R. Toyofuku, K. Izumi, K. Umemura, Y. IMAI, N. Taniguchi, K. Mishima, Plasmon resonance-enhanced circularly polarized luminescence of self-assembled Meso-tetrakis(4-sulfonatophenyl)porphyrin-surfactant complexes in interaction with Ag nanoparticles. Chem. Commun. 50, 11169 (2014)Google Scholar
  43. 43.
    B.M. Maoz, R. van der Weegen, Z. Fan, A.O. Govorov, G. Ellestad, N. Berova, E.W. Meijer, G. Markovich, Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies. J. Am. Chem. Soc. 134, 17807 (2012)CrossRefGoogle Scholar
  44. 44.
    A.O. Govorov, Z. Fan, Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media. Chem. Phys. Chem. 13, 2551 (2012)Google Scholar
  45. 45.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)CrossRefGoogle Scholar
  46. 46.
    N. Abdulrahman, Z. Fan, T. Tonooka, S. Kelly, N. Gadegaard, E. Hendry, A.O. Govorov, M. Kadodwala, Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures. Nano Lett. 12, 977 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    B.M. Maoz, Y. Chaikin, A.B. Tesler, O. Bar, Elli, Z. Fan, A.O. Govorov, G. Markovich, Amplification of chiroptical activity of chiral biomolecules by surface plasmons. Nano Lett. 13, 1203 (2013)Google Scholar
  48. 48.
    G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232 (1997)CrossRefGoogle Scholar
  49. 49.
    A.O. Govorov, Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries. J. Phys. Chem. C 115, 7914 (2011)CrossRefGoogle Scholar
  50. 50.
    F. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A.O. Govorov, O. Gang, Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett. 13, 3145 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    V.A. Gérard, Y.K. Gun’ko, E. Defrancq, A.O. Govorov, Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles. Chem. Commun. 47, 7383 (2011)CrossRefGoogle Scholar
  52. 52.
    H. Zhang, A.O. Govorov, Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals. Phys. Rev. B 87, 075410 (2013)Google Scholar
  53. 53.
    M.E. Layani, A. Ben, Moshe, M. Varenik, O. Regev, H. Zhang, A.O. Govorov, G. Markovich, Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies. J. Phys. Chem. C 117, 22240 (2013)Google Scholar
  54. 54.
    Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, Z. Tang, Manipulation of collective optical activity in one-dimensional plasmonic assembly. ACS Nano 6, 2326 (2012)CrossRefGoogle Scholar
  55. 55.
    R.-Y. Wang, P. Wang, Y. Liu, W. Zhao, D. Zhai, X. Hong, Y. Ji, X. Wu, F. Wang, D. Zhang, W. Zhang, R. Liu, X. Zhang, Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters. J. Phys. Chem. C 118, 9690 (2014)CrossRefGoogle Scholar
  56. 56.
    X. Wu, L. Xu, L. Liu, W. Ma, H. Yin, H. Kuang, L. Wang, C. Xu, N.A. Kotov, Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 135, 18629 (2013)CrossRefGoogle Scholar
  57. 57.
    Z. Xu, L. Xu, Y. Zhu, W. Ma, H. Kuang, L. Wang, C. Xu, Chirality based sensor for bisphenol. A detection. Chem. Commun. 48, 5760 (2012)CrossRefGoogle Scholar
  58. 58.
    Z. Xu, L. Xu, L.M. Liz-Marzán, W. Ma, N.A. Kotov, L. Wang, H. Kuang, C. Xu, Sensitive detection of silver ions based on chiroplasmonic assemblies of nanoparticles. Adv. Opt. Mater. 1, 626 (2013)CrossRefGoogle Scholar
  59. 59.
    H.S. Oh, S. Liu, H. Jee, A. Baev, M.T. Swihart, P.N. Prasad, Chiral poly (fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality. J. Am. Chem. Soc. 132, 17346 (2010)Google Scholar
  60. 60.
    W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, N.A. Kotov, Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 4, 2689 (2013)ADSGoogle Scholar
  61. 61.
    Y. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, N.A. Kotov, Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. Nano Lett. 14, 3908 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    T.J. Davis, D.E. Gómez, Interaction of localized surface plasmons with chiral molecules. Phys. Rev. B 90, 235424 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    M.L. Nesterov, X. Yin, M. Schäferling, H. Giessen, T. Weiss, The role of plasmon-generated near-fields in enhanced circular dichroism spectroscopy. ACS Photon. 3, 578 (2016)CrossRefGoogle Scholar
  64. 64.
    E. Hendry, T. Carpy, J. Johnston, M. Popland, R.V. Mikhaylovskiy, A.J. Lapthorn, S.M. Kelly, L.D. Barron, N. Gadegaard, M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    R. Tullius, A.S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L.D. Barron, V.M. Rotello, G. Cooke, A. Lapthorn, M. Kadodwala, “Superchiral” spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures. J. Am. Chem. Soc. 137, 8380 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.4th Physics InstituteUniversity of StuttgartStuttgartGermany

Personalised recommendations