Advertisement

The Intestinal Microbiome, the Immune System and Spondyloarthropathy

  • Mary-Ellen Costello
  • Matthew A. BrownEmail author
Chapter
Part of the Progress in Inflammation Research book series (PIR)

Abstract

The microbial communities that live in and on our bodies play complex roles in maintaining our health and in causing disease. The recent application of high-throughput DNA sequencing to examine these communities, both in terms of species present and in their activities, has proven to be a very powerful tool for examining the influences of microbes on human health. Whilst we are only just beginning to understand the role of our microbial ‘second’ genome, what is clear is that certain shifts and alterations in our microbiome are associated with, and may ultimately cause or cure, disease. The interaction between human host and microbes is multifaceted, however, and such interactions must therefore be examined in overall context of disease, diet, medications as well as underlying host genetics.

Keywords

Inflammatory Bowel Disease Clostridium Difficile Infection Faecal Microbiota Transplant Human Microbiome Project Host Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  2. 2.
    Burns M, Lynch J, Starr T, Knights D, Blekhman R (2015) Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med 7(1):55PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484PubMedCrossRefGoogle Scholar
  4. 4.
    Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van† Treuren W, Ren B et al (2014) The treatment-naive microbiome in new-onset Crohn s disease. Cell Host Microbe 15(3):382–392PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Knights D, Silverberg M, Weersma R, Gevers D, Dijkstra G, Huang H et al (2014) Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med 6(12):107PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 107(26):11971–11975PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Huh SY, Rifas-Shiman SL, Zera CA, Edwards JWR, Oken E, Weiss ST, et al (2012) Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort study. Arch Dis Child 97(7):610–616Google Scholar
  8. 8.
    Bager P (2011) Birth by caesarean section and wheezing, asthma, allergy, and intestinal disease. Clin Exp Allergy 41(2):147–148PubMedCrossRefGoogle Scholar
  9. 9.
    Arrieta M-C, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S et al (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7(307):307ra152–307ra152PubMedCrossRefGoogle Scholar
  10. 10.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende D et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L, Vanamala J et al (2014) The intestinal metabolome: an intersection between microbiota and host. Gastroenterology 146(6):1470–1476PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Clemente J, Ursell L, Parfrey L, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M et al (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227PubMedCentralPubMedGoogle Scholar
  16. 16.
    Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12(1):5–9PubMedCrossRefGoogle Scholar
  17. 17.
    Kranich J, Maslowski KM, Mackay CR (2011) Commensal flora and the regulation of inflammatory and autoimmune responses. Semin Immunol 23(2):139–145PubMedCrossRefGoogle Scholar
  18. 18.
    Perdomo OJ, Cavaillon JM, Huerre M, Ohayon H, Gounon P, Sansonetti PJ (1994) Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J Exp Med 180(4):1307–1319PubMedCrossRefGoogle Scholar
  19. 19.
    Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth Cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci 105(52):20858–20863PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Duan J, Chung H, Troy E, Kasper DL (2010) Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing [gamma]/[delta] T cells. Cell Host Microbe 7(2):140–150PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Cho I, Blaser M (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:10Google Scholar
  23. 23.
    Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ (2011) Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Micro 9(1):27–38CrossRefGoogle Scholar
  24. 24.
    Laurence A, O’Shea JJ, Watford WT (2008) Interleukin-22: a sheep in wolf’s clothing. Nat Med 14(3):247–249PubMedCrossRefGoogle Scholar
  25. 25.
    Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–82PubMedCrossRefGoogle Scholar
  26. 26.
    Maloy KJ, Powrie F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474(7351):298–306PubMedCrossRefGoogle Scholar
  27. 27.
    Koslowski MJ, Beisner J, Stange EF, Wehkamp J (2010) Innate antimicrobial host defense in small intestinal Crohn’s disease. Int J Med Microbiol 300(1):34–40PubMedCrossRefGoogle Scholar
  28. 28.
    Wehkamp J, Koslowski M, Wang G, Stange EF (2008) Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn’s disease. Mucosal Immunol 1(1s):S67–S74PubMedCrossRefGoogle Scholar
  29. 29.
    Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8(6):411–420PubMedCrossRefGoogle Scholar
  30. 30.
    Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10(3):159–169PubMedCrossRefGoogle Scholar
  31. 31.
    Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K et al (2013) Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342(6157):447–453PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Heazlewood C, Cook M, Eri R, Price G, Tauro S, Taupin D et al (2008) Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 5:e54PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Sherlock J, Joyce-Shaikh B, Turner S, Chao C, Sathe M, Grein J et al (2012) IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med 18:1069–1076PubMedCrossRefGoogle Scholar
  34. 34.
    Fasano A, Nataro JP (2004) Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv Drug Deliv Rev 56(6):795–807PubMedCrossRefGoogle Scholar
  35. 35.
    Collins SM. IV (2001) Modulation of intestinal inflammation by stress: basic mechanisms and clinical relevance. 2001-03-01 00:00:00. G315-G8 pGoogle Scholar
  36. 36.
    Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM et al (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171(11):6164–6172PubMedCrossRefGoogle Scholar
  37. 37.
    Nusrat A, Turner JR, Madara JL. IV (2000) Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. 2000-11-01 00:00:00. G851-G7 pGoogle Scholar
  38. 38.
    Teahon K, Smethurst P, Levi AJ, Menzies IS, Bjarnason I (1992) Intestinal permeability in patients with Crohn’s disease and their first degree relatives. Gut 33(3):320–323PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Lubrano E, Ciacci C, Ames P, Mazzacca G, Oriente P, Scarpa R (1996) The arthritis of coeliac disease: prevalence and pattern in 200 adult patients. Rheumatology 35:1314–1318CrossRefGoogle Scholar
  40. 40.
    Podolsky DK (2002) Inflammatory bowel disease. N Eng J Med 347(6):417–429CrossRefGoogle Scholar
  41. 41.
    Mielants H, Veys EM, Goemaere S, Goethals K, Cuvelier C, De Vos M (1991) Gut inflammation in the spondyloarthropathies: clinical, radiologic, biologic and genetic features in relation to the type of histology. A prospective study. J Rheumatol 18(10):1542–1551PubMedGoogle Scholar
  42. 42.
    Vaile J, Meddings J, Yacyshyn B, Russell A, Maksymowych W (1999) Bowel permeability and CD45RO expression on circulating CD20+ B cells in patients with ankylosing spondylitis and their relatives. J Rheumatol 26:128–135PubMedGoogle Scholar
  43. 43.
    Martinez-Gonzalez O, Cantero-Hinojosa J, Paule-Sastre P, Gomez-Magan JC, Salvatierra-Rios D (1994) Intestinal permeability in patients with ankylosing spondyllitis and their healthy relatives. Rheumatology 33(7):644–647CrossRefGoogle Scholar
  44. 44.
    Chabot S, Wagner JS, Farrant S, Neutra MR (2006) TLRs regulate the gatekeeping functions of the intestinal follicle-associated epithelium. J Immunol 176(7):4275–4283PubMedCrossRefGoogle Scholar
  45. 45.
    Suzuki K, Ha S, Tsuji M, Fagarasan S (2007) Intestinal IgA synthesis: a primitive form of adaptive immunity that regulates microbial communities in the gut. Semin Immunol 19:127–135PubMedCrossRefGoogle Scholar
  46. 46.
    Wesa A, Galy A (2002) Increased production of pro-inflammatory cytokines and enhanced T cell responses after activation of human dendritic cells with IL-1 and CD40 ligand. BMC Immunol 3:14PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Cruz CM, Rinna A, Forman HJ, Ventura ALM, Persechini PM, Ojcius DM (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282(5):2871–2879PubMedCrossRefGoogle Scholar
  48. 48.
    Hirotani T, Lee PY, Kuwata H, Yamamoto M, Matsumoto M, Kawase I et al (2005) The nuclear IkB protein IkBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J Immunol 174(6):3650–3657PubMedCrossRefGoogle Scholar
  49. 49.
    Denning T, Wang Y-C, Patel S, Williams I, Pulendran B (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094PubMedCrossRefGoogle Scholar
  50. 50.
    Glocker E, Kotlarz D, Boztug K, Gertz E, Schaffer A, Noyan F et al (2009) Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 361:2033–2045PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Consortium TUIGCtWTCC (2009) Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet 41(12):1330–1334CrossRefGoogle Scholar
  52. 52.
    Franke A, Balschun T, Sina C, Ellinghaus D, Hasler R, Mayr G et al (2010) Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat Genet 42(4):292–294PubMedCrossRefGoogle Scholar
  53. 53.
    Oppmann B, Lesley R, Blom B, Timans J, Xu Y, Hunte B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725PubMedCrossRefGoogle Scholar
  54. 54.
    Burton P, Clayton D, Cardon L, Craddock N, Deloukas P, Duncanson A et al (2007) Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 39:1329–1337PubMedCrossRefGoogle Scholar
  55. 55.
    Cargill M, Schrodi S, Chang M, Garcia V, Brandon R, Callis K et al (2007) A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Gen 80:273–290CrossRefGoogle Scholar
  56. 56.
    Duerr R, Taylor K, Brant S, Rioux J, Silverberg M, Daly M et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Xavier JM, Shahram F, Davatchi F, Rosa A, Crespo J, Abdollahi BS et al (2012) Association study of IL10 and IL23R–IL12RB2 in Iranian patients with Behçet’s disease. Arthritis Rheum 64(8):2761–2772PubMedCrossRefGoogle Scholar
  58. 58.
    Ogawa A, Andoh A, Araki Y, Bamba T, Fujiyama Y (2004) Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol 110:55–62PubMedCrossRefGoogle Scholar
  59. 59.
    Zheng S, Wang J, Horwitz D (2008) Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol 180:7112–7116PubMedCrossRefGoogle Scholar
  60. 60.
    Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II et al (2009) Lymphoid tissue inducer–like cells are an innate source of IL-17 and IL-22. J Exp Med 206(1):35–41PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Kobori A, Yagi Y, Imaeda H, Ban H, Bamba S, Tsujikawa T et al (2010) Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol 45(10):999–1007PubMedCrossRefGoogle Scholar
  62. 62.
    Lockhart E, Green AM, Flynn JL (2006) IL-17 production is dominated by γδ T cells rather than CD4 T cells during mycobacterium tuberculosis infection. J Immunol 177(7):4662–4669PubMedCrossRefGoogle Scholar
  63. 63.
    Sonnenberg GF, Fouser LA, Artis D (2011) Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 12(5):383–390PubMedCrossRefGoogle Scholar
  64. 64.
    Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10(7):479–489PubMedCrossRefGoogle Scholar
  65. 65.
    Mokuno Y, Matsuguchi T, Takano M, Nishimura H, Washizu J, Ogawa T et al (2000) Expression of toll-like receptor 2 on gammadelta T cells bearing invariant Vgamma6/Vdelta1 induced by Escherichia coli infection in mice. J Immunol 165:931–940PubMedCrossRefGoogle Scholar
  66. 66.
    Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M (2009) Interleukin-17-producing [gamma][delta] T cells selectively expand in response to pathogen products and environmental signals. Immunity 31(2):321–330PubMedCrossRefGoogle Scholar
  67. 67.
    Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y (2007) Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol 178:4466–4472PubMedCrossRefGoogle Scholar
  68. 68.
    Roark C, French J, Taylor M, Bendele A, Born W, O’Brien R (2007) Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells. J Immunol 179:5576–5583PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Nanno M, Kanari Y, Naito T, Inoue N, Hisamatsu T, Chinen H et al (2008) Exacerbating role of gammadelta T cells in chronic colitis of T-cell receptor alpha mutant mice. Gastroenterology 134:481–490PubMedCrossRefGoogle Scholar
  70. 70.
    Kenna T, Davidson S, Duan R, Bradbury L, McFarlane J, Smith M et al (2012) Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive gamma/delta T cells in patients with active ankylosing spondylitis. Arthritis Rheum 64:1420–1429PubMedCrossRefGoogle Scholar
  71. 71.
    Bendelac A, Savage P, Teyton L (2007) The biology of NKT cells. Ann Rev Immunol 25:297–336CrossRefGoogle Scholar
  72. 72.
    Rachitskaya A, Hansen A, Horai R, Li Z, Villasmil R, Luger D et al (2008) Cutting edge: NKT cells constitutively express IL-23 receptor and RORgammat and rapidly produce IL-17 upon receptor ligation in an IL-6- independent fashion. J Immunol 180:5167–5171PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T et al (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9:582–588PubMedCrossRefGoogle Scholar
  74. 74.
    Baxter A, Kinder S, Hammond K, Scollay R, Godfrey D (1997) Association between alphabetaTCR+CD4-CD8- T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46:572–582PubMedCrossRefGoogle Scholar
  75. 75.
    Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W (2002) Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17(5):629–638PubMedCrossRefGoogle Scholar
  76. 76.
    Ueno Y, Tanaka S, Sumii M, Miyake S, Tazuma S, Taniguchi M et al (2005) Single dose of OCH improves mucosal T helper type 1/T helper type 2 cytokine balance and prevents experimental colitis in the presence of Vα14 natural killer T cells in mice. Inflamm Bowel Dis 11(1):35–41PubMedCrossRefGoogle Scholar
  77. 77.
    Wingender G, Stepniak D, Krebs P, Lin L, McBride S, Wei B et al (2012) Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology 143:418–428PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Coppieters K, Van Beneden K, Jacques P, Dewint P, Vervloet A, Vander Cruyssen B et al (2007) A single early activation of invariant NK T cells confers long-term protection against collagen-induced arthritis in a ligand-specific manner. J Immunol 179:2300–2309PubMedCrossRefGoogle Scholar
  79. 79.
    Jacques P, Venken K, Van Beneden K, Hammad H, Seeuws S, Drennan M et al (2010) Invariant natural killer T cells are natural regulators of murine spondylarthritis. Arthritis Rheum 62:988–999PubMedCrossRefGoogle Scholar
  80. 80.
    Singh A, Misra R, Aggarwal A (2011) Th-17 associated cytokines in patients with reactive arthritis/undifferentiated spondyloarthropathy. Clin Rheumatol 30(6):771–776PubMedCrossRefGoogle Scholar
  81. 81.
    Gold M, Cerri S, Smyk-Pearson S, Cansler M, Vogt T, Delepine J et al (2010) Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8:e1000407PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N, Core M et al (2010) Antimicrobial activity of mucosal associated invariant T cells. Nat Immunol 11:701–708PubMedCrossRefGoogle Scholar
  83. 83.
    Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D et al (2011) Human MAIT cells are xenobiotic resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117:1250–1259PubMedCrossRefGoogle Scholar
  84. 84.
    Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F et al (2003) Selection of evolutionarily conserved mucosalassociated invariant T cells by MR1. Nature 422:164–169PubMedCrossRefGoogle Scholar
  85. 85.
    Savage A, Constantinides M, Han J, Picard D, Martin E, Li B et al (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29:391–403PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Billerbeck E, Kang Y, Walker L, Lockstone H, Grafmueller S, Fleming V et al (2010) Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc Natl Acad Sci U S A 107:3006–3011PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Le Bourhis L, Guerri L, Dusseaux M, Martin E, Soudais C, Lantz O (2011) Mucosal associated invariant T cells: unconventional development and function. Trends Immunol 32:212–218PubMedCrossRefGoogle Scholar
  88. 88.
    Leeansyah E, Loh L, Nixon DF, Sandberg JK (2014) Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat Commun 5:3143PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Qiu J, Heller Jennifer J, Guo X, Chen Z-ming E, Fish K, Fu Y-X et al (2012) The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36(1):92–104PubMedCrossRefGoogle Scholar
  90. 90.
    Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Berard M, Kleinschek M et al (2011) ROR[gamma]t+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 12(4):320–326PubMedCrossRefGoogle Scholar
  91. 91.
    Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ et al (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464(7293):1371–1375PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz J et al (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725PubMedCrossRefGoogle Scholar
  93. 93.
    Wu H-J, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32(6):815–827PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Wang S, Charbonnier L-M, Noval Rivas M, Georgiev P, Li N, Gerber G et al (2015) MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity 43(2):289–303PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci 104(34):13780–13785PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Papa E, Docktor M, Smillie C, Weber S, Preheim SP, Gevers D et al (2012) Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS One 7(6):e39242PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Elinav E, Strowig T, Kau Andrew L, Henao-Mejia J, Thaiss Christoph A, Booth Carmen J et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145(5):745–757PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al (2011) Induction of colonic regulatory T cells by indigenous clostridium species. Science 331:337–341PubMedCrossRefGoogle Scholar
  99. 99.
    David L, Materna A, Friedman J, Campos-Baptista M, Blackburn M, Perrotta A et al (2014) Host lifestyle affects human microbiota on daily timescales. Genome Biol 15(7):R89PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563PubMedCrossRefGoogle Scholar
  101. 101.
    Group TNHW, Peterson J, Garges S, Giovanni M, McInnes P, Wang L et al (2009) The NIH human microbiome project. Genome Res 19(12):2317–2323CrossRefGoogle Scholar
  102. 102.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Consortium HMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214CrossRefGoogle Scholar
  104. 104.
    Caporaso JG, Lauber C, Costello E, Berg-Lyons D, Gonzalez A, Stombaugh J et al (2011) Moving pictures of the human microbiome. Genome Biol 12(5):R50PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271PubMedCentralPubMedGoogle Scholar
  107. 107.
    Booijink CCGM, Boekhorst J, Zoetendal EG, Smidt H, Kleerebezem M, de Vos WM (2010) Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed. Appl Environ Microbiol 76(16):5533–5540PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Micro 9(4):279–290CrossRefGoogle Scholar
  109. 109.
    Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci 107(44):18933–18938PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CCGM, Troost FJ et al (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6(7):1415–1426PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Leimena M, Ramiro-Garcia J, Davids M, van den Bogert B, Smidt H, Smid E et al (2013) A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets. BMC Genomics 14(1):530PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Stebbings S, Munro K, Simon MA, Tannock G, Highton J, Harmsen H et al (2002) Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology 41(12):1395–1401PubMedCrossRefGoogle Scholar
  113. 113.
    Stone MA, Payne U, Schentag C, Rahman P, Pacheco-Tena C, Inman RD (2004) Comparative immune responses to candidate arthritogenic bacteria do not confirm a dominant role for Klebsiella pneumonia in the pathogenesis of familial ankylosing spondylitis. Rheumatology 43(2):148–155PubMedCrossRefGoogle Scholar
  114. 114.
    Costello M-E, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B et al (2015) Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheum 67(3):686–691CrossRefGoogle Scholar
  115. 115.
    Lin P, Bach M, Asquith M, Lee AY, Akileswaran L, Stauffer P et al (2014) HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS One 9(8):e105684PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Rath H, Herfarth H, Ikeda J, Grenther W, Hamm T, Balish E et al (1996) Normal luminal bacteria, especially bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 98:945–953PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Rehaume LM, Mondot S, Aguirre de Cárcer D, Velasco J, Benham H, Hasnain SZ et al (2014) ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheum 66(10):2780–2792CrossRefGoogle Scholar
  118. 118.
    Eerola E, Mottonen T, Hannonen P, Luukkainen R, Kantola I, Vuori K et al (1994) Intestinal flora in early rheumatoid arthritis. Rheumatology 33:1030–1038CrossRefGoogle Scholar
  119. 119.
    Vaahtovuo J, Munukka E, Korkeamaki M, Luukainen R, Toivanen P (2008) Fecal microbiota in early rheumatoid arthritis. J Rheumatol 35(8):1500–1505PubMedGoogle Scholar
  120. 120.
    Eckburg P, Bik E, Bernstein C, Purdom E, Dethlefsen L, Sargent M et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Martinez-Martinez RE, Abud-Mendoza C, Patiño-Marin N, Rizo-Rodríguez JC, Little JW, Loyola-Rodríguez JP (2009) Detection of periodontal bacterial DNA in serum and synovial fluid in refractory rheumatoid arthritis patients. J Clin Periodontol 36(12):1004–1010PubMedCrossRefGoogle Scholar
  122. 122.
    Wegner N, Wait R, Sroka A, Eick S, Nguyen K-A, Lundberg K et al (2010) Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum 62(9):2662–2672PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Gaiffer MH, Holdsworth CD, Duerden BI (1991) The assessment of faecal flora in patients with inflammatory bowel disease by a simplified bacteriological technique. J Med Microbiol 35(4):238–243CrossRefGoogle Scholar
  124. 124.
    Seksik P, Rigottier-Gois L, Gramet G, Sutren M, Pochart P, Marteau P et al (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut 52(2):237–242PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Ott SJ, Musfeldt M, Ullmann U, Hampe J, Schreiber S (2004) Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J Clin Microbiol 42(6):2566–2572PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Walker A, Sanderson J, Churcher C, Parkes G, Hudspith B, Rayment N et al (2011) High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol 11:7PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Quinton JF (1998) Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut 42:788–791PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Targan SR (2005) Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology 128:2020–2028PubMedCrossRefGoogle Scholar
  129. 129.
    Mundwiler M, Mei L, Landers C, Reveille J, Targan S, Weisman M (2009) Inflammatory bowel disease serologies in ankylosing spondylitis patients: a pilot study. Arthritis Res Ther 11(6):R177PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Wallis D (2013) Elevated serum anti-flagellin antibodies implicate subclinical bowel inflammation in ankylosing spondylitis: an observational study. Arthritis Res Ther 15:R166PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    van Praet L (2013) Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. Ann Rheum Dis 72:414–417PubMedCrossRefGoogle Scholar
  132. 132.
    Krueger JG (2002) The immunologic basis for the treatment of psoriasis with new biologic agents. J Am Acad Dermatol 46(1):1–26PubMedCrossRefGoogle Scholar
  133. 133.
    Fahlen A, Engstrand L, Baker B, Powles A, Fry L (2012) Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res 304:15–22PubMedCrossRefGoogle Scholar
  134. 134.
    Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM et al (2015) Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheum 67(1):128–139CrossRefGoogle Scholar
  135. 135.
    Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci 108(Supplement 1):4554–4561PubMedCrossRefGoogle Scholar
  136. 136.
    Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5(3):e9836PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A et al (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to clostridium difficile-induced colitis. Infect Immun 80(1):62–73PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214PubMedCrossRefGoogle Scholar
  139. 139.
    Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A et al (2012) Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il102/2 mice. Nature 487(7405):104–108PubMedCentralPubMedGoogle Scholar
  140. 140.
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al. (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Mathis D, editor. 2013-11-05 15:22:27Google Scholar
  141. 141.
    Scher JU, Abramson SB (2011) The microbiome and rheumatoid arthritis. Nat Rev Rheumatol 7(10):569–578PubMedCentralPubMedGoogle Scholar
  142. 142.
    Norman JM, Handley SA, Virgin HW (2014) Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology 146(6):1459–1469PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Virgin HW (2014) The virome in mammalian physiology and disease. Cell 157(1):142–150PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL et al (2013) The long-term stability of the human gut microbiota. Science (New York, NY) 341(6141):1237439CrossRefGoogle Scholar
  145. 145.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023PubMedCrossRefGoogle Scholar
  146. 146.
    Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    van Nood E, Speelman P, Nieuwdorp M, Keller J (2014) Fecal microbiota transplantation: facts and controversies. Curr Opin Gastroenterol 30(1):34–39. doi: 10.1097/MOG.0000000000000024 PubMedCrossRefGoogle Scholar
  148. 148.
    Smith M, Kassam Z, Edelstein C, Burgess J, Alm E (2014) OpenBiome remains open to serve the medical community. Nat Biotech 32(9):867CrossRefGoogle Scholar
  149. 149.
    Kassam Z, Lee CH, Yuan Y, Hunt RH (2013) Fecal microbiota transplantation for clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol 108(4):500–508PubMedCrossRefGoogle Scholar
  150. 150.
    van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM et al (2013) Duodenal infusion of donor feces for recurrent clostridium difficile. N Eng J Med 368(5):407–415CrossRefGoogle Scholar
  151. 151.
    Youngster I, Sauk J, Pindar C, Wilson RG, Kaplan JL, Smith MB et al (2014) Fecal microbiota transplant for relapsing clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin Infect Dis 58(11):1515–1522PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Alang N, Kelly CR (2015) Weight gain after fecal microbiota transplantation. Open Forum Infect Dis 2(1):ofv004PubMedCentralPubMedCrossRefGoogle Scholar
  153. 153.
    Petrof E, Gloor G, Vanner S, Weese S, Carter D, Daigneault M et al (2013) Stool substitute transplant therapy for the eradication of clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 1(1):1–12CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute of Health and Biomedical InnovationQueensland University of TechnologyWoolloongabbaAustralia
  2. 2.Translational Research InstitutePrincess Alexandra HospitalWoolloongabbaAustralia

Personalised recommendations