Skip to main content

RCA-Assisted Self-assembled DNA Origami Nano-constructs as Vehicles for Cellular Delivery of Diagnostic Probes and Therapeutic Drugs

  • Chapter
  • First Online:

Abstract

Long single-stranded (ss) DNAs generated by rolling circle amplification (RCA) are attractive vehicles for cellular delivery of drug and/or cellular probes since they can be readily loaded by multiple chemical entities via variety of means. However, they cannot be used for this purpose just such as they are because large and loose DNA particles they normally form could not easily enter into cells. Through DNA origami technology, RCA-generated single-stranded (ss) DNA can be used as scaffolds to produce the condensed two-dimensional (2D) DNA nanoribbons. Besides, the RCA-based DNA origami can be assembled on the surface of gold nanoparticles to create the three-dimensional (3D) DNA-gold nanoribbons. Compared to the conventional DNA origami, RCA offers the design flexibility of both scaffold and staple sequences. Particularly, the assembly of DNA nanoribbons is greatly simplified due to the repetitive sequences in RCA amplicons allowing the involvement of only few staple strands. We demonstrate here that both the 2D DNA nanoribbon and the 3D DNA-gold nanoribbon obtained with the use of RCA can serve as high-efficiency nanocarriers for cellular probe and drug delivery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali MM, Li F, Zhang Z et al (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43(10):3324–3341

    Article  CAS  PubMed  Google Scholar 

  • Chockalingam A, Brooks JC, Cameron JL et al (2009) TLR9 traffics through the Golgi complex to localize to endolysosomes and respond to CpG DNA. Immunol Cell Biol 87(3):209–217

    Article  CAS  PubMed  Google Scholar 

  • Detter JC, Nelson JR, Richardson PM (2004) Phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. In: Demidov VV, Boude NE (eds) DNA amplification: current technologies and applications. Horizon Bioscience, Wymondham

    Google Scholar 

  • Douglas SM, Dietz H, Liedl T et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245):414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci U S A 92(10):4641–4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacker H, Redecke V, Blagoev B et al (2006) Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439(7073):204–207

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745

    Article  CAS  PubMed  Google Scholar 

  • Iliev DB, Skjæveland I, Jørgensen JB (2013) CpG oligonucleotides bind TLR9 and RRM-containing proteins in Atlantic Salmon (Salmo salar). BMC Immunol 14:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q, Song C, Nangreave J et al (2012) DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc 134(32):13396–13403

    Article  CAS  PubMed  Google Scholar 

  • Krieg AM, Yi AK, Matson S et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374(6522):546–549

    Article  CAS  PubMed  Google Scholar 

  • Lizardi PM, Huang X, Zhu Z et al (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19(3):225–232

    Article  CAS  PubMed  Google Scholar 

  • Ouyang X, Li J, Liu H et al (2013) Rolling circle amplification-based DNA origami nanostructures for intracellular delivery of immunostimulatory drugs. Small 9(18):3082–3087

    Article  CAS  PubMed  Google Scholar 

  • Ouyang X, Li J, Liu H et al (2014) Self-assembly of DNA-based drug delivery nanocarriers with rolling circle amplification. Methods 67(2):198–204

    Article  CAS  PubMed  Google Scholar 

  • Qiao B, Li B, Yang X et al (2005) Specific siRNA downregulated TLR9 and altered cytokine expression pattern in macrophage after CpG DNA stimulation. Cell Mol Immunol 2(2):130–135

    CAS  PubMed  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Article  CAS  PubMed  Google Scholar 

  • Sacca B, Niemeyer CM (2012) DNA origami: the art of folding DNA. Angew Chem Int Ed 51(1):58–66

    Article  CAS  Google Scholar 

  • Schüller VJ, Heidegger S, Sandholzer N et al (2011) Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5(12):9696–9702

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer B, Wiltshire S, Lambert J et al (2000) Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc Natl Acad Sci U S A 97(18):10113–10119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolina IV, Cherny DI, Nietupski RM et al (2005) High-density fluorescently labeled rolling-circle amplicons for DNA diagnostics. Anal Biochem 347(1):152–155

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Hu C, Wang P et al (2015) Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery. Angew Chem Int Ed 54(8):2431–2435

    Article  CAS  Google Scholar 

  • Zhao W, Gao Y, Kandadai SA et al (2006) DNA polymerization on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies. Angew Chem Int Ed 45(15):2413–2415

    Article  CAS  Google Scholar 

  • Zhao YX, Shaw A, Zeng X et al (2012) DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6(10):8684–8691

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Song, S., Fan, C. (2016). RCA-Assisted Self-assembled DNA Origami Nano-constructs as Vehicles for Cellular Delivery of Diagnostic Probes and Therapeutic Drugs. In: Demidov, V. (eds) Rolling Circle Amplification (RCA). Springer, Cham. https://doi.org/10.1007/978-3-319-42226-8_13

Download citation

Publish with us

Policies and ethics