Skip to main content

Multimodal Imaging and Image Fusion

  • Chapter
  • First Online:
Small Animal Imaging

Abstract

In multimodal imaging diverse imaging techniques are applied to the same subject usually within a limited time frame in order to capture the same functional, morphologic, and metabolic state of the subject. The historical most compelling need for multimodal imaging stems from the requirement to match functional or metabolic information captured with, e.g., positron emission tomography (PET) or single-photon emission computed tomography (SPECT) with morphological information about the subject obtained from computed tomography (CT) or magnetic resonance imaging (MRI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksenov DP, et al. Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex. J Cereb Blood Flow Metab. 2015;35(11):1819–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandrakis G, Rannou FR, Chatziioannou AF. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol. 2005;50(17):4225–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashton JR, et al. Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study. PLoS One. 2014;9(2):e88129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Austin VC, et al. Confounding effects of anesthesia on functional activation in rodent brain: a study of halothane and alpha-chloralose anesthesia. Neuroimage. 2005;24(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  • Bai RJ, et al. Investigation on the optical scan condition for imaging of multi-slice spiral CT liver perfusion in rats. Chin Med J (Engl). 2013;126(24):4742–6.

    Google Scholar 

  • Bailey DL, et al. Combined PET/MR: the real work has just started. Summary Report of the Third International Workshop on PET/MR Imaging; February 17–21, 2014, Tubingen, Germany. Mol Imaging Biol. 2015;17(3):297–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betancur J, et al. Synchronization and registration of cine magnetic resonance and dynamic computed tomography images of the heart. IEEE J Biomed Health Inform. 2015.

    Google Scholar 

  • Beyer T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41(8):1369–79.

    CAS  PubMed  Google Scholar 

  • Booij J, et al. Imaging of dopamine transporters in rats using high-resolution pinhole single-photon emission tomography. Eur J Nucl Med Mol Imaging. 2002;29(9):1221–4.

    Article  CAS  PubMed  Google Scholar 

  • Buck AK, et al. SPECT/CT. J Nucl Med. 2008;49(8):1305–19.

    Article  PubMed  Google Scholar 

  • Busch E, et al. Simultaneous recording of eeg, dc potential and diffusion‐weighted nmr imaging during potassium induced cortical spreading depression in rats. NMR Biomed. 1995;8(2):59–64.

    Article  CAS  PubMed  Google Scholar 

  • Catana C, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A. 2008;105(10):3705–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catana C, et al. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med. 2011;52(1):154–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chughtai K, et al. Fiducial markers for combined 3-dimensional mass spectrometric and optical tissue imaging. Anal Chem. 2012;84(4):1817–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contag CH, et al. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia. 2000;2(1–2):41–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs J, Eccles JC, Fatt P. The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post‐synaptic potential. J Physiol. 1955;130(2):326–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Vecchio S, et al. PET/CT in cancer research: from preclinical to clinical applications. Contrast Media Mol Imaging. 2010;5(4):190–200.

    Article  PubMed  Google Scholar 

  • Dondi M, et al. Myocardial SPECT: what do we gain from attenuation correction (and when)? Q J Nucl Med Mol Imaging. 2004;48(3):181.

    CAS  PubMed  Google Scholar 

  • Drzezga A, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53(6):845–55.

    Article  PubMed  Google Scholar 

  • Figueroa, SD, et al. Performance characteristics of an integrated small animal SPECT/CT unit. in Nuclear Science Symposium Conference Record, 2005 IEEE. 2005. IEEE.

    Google Scholar 

  • Franc BL, et al. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med. 2008;49(10):1651–63.

    Article  PubMed  Google Scholar 

  • Furst S, et al. Motion correction strategies for integrated PET/MR. J Nucl Med. 2015;56(2):261–9.

    Article  PubMed  Google Scholar 

  • Gloor P. Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography. J Clin Neurophysiol. 1985;2(4):327–54.

    Article  CAS  PubMed  Google Scholar 

  • Goetz C, et al. SPECT low-field MRI system for small-animal imaging. J Nucl Med. 2008;49(1):88–93.

    Article  PubMed  Google Scholar 

  • Greco A, et al. High-resolution positron emission tomography/computed tomography imaging of the mouse heart. Exp Physiol. 2013;98(3):645–51.

    Article  PubMed  Google Scholar 

  • Hasegawa Y, et al. Temperature dependent change of apparent diffusion coefficient of water in normal and ischemic brain of rats. J Cereb Blood Flow Metab. 1994;14(3):383–90.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa BH, et al. Dual-modality imaging of cancer with SPECT/CT. Technol Cancer Res Treat. 2002;1(6):449–58.

    Article  PubMed  Google Scholar 

  • Hill DL, et al. Medical image registration. Phys Med Biol. 2001;46(3):R1–45.

    Article  CAS  PubMed  Google Scholar 

  • Huber MM, et al. Fluorescently detectable magnetic resonance imaging agents. Bioconjug Chem. 1998;9(2):242–9.

    Article  CAS  PubMed  Google Scholar 

  • Hwang AB, Hasegawa BH. Attenuation correction for small animal SPECT imaging using x-ray CT data. Med Phys. 2005;32(9):2799–804.

    Article  PubMed  Google Scholar 

  • Ives JR, et al. Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol. 1993;87(6):417–20.

    Article  CAS  PubMed  Google Scholar 

  • Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37–61.

    Article  PubMed  Google Scholar 

  • Judenhofer MS, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14(4):459–65.

    Article  CAS  PubMed  Google Scholar 

  • Kempf W. Forschungsmethoden der Psychologie: zwischen naturwissenschaftlichem Experiment und sozialwissenschaftlicher Hermeneutik. Band I: Theorie und Empirie. Berlin: Regener; 2009.

    Google Scholar 

  • Kinahan PE, et al. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25(10):2046–53.

    Article  CAS  PubMed  Google Scholar 

  • Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med. 2003;33(3):166–79.

    Article  PubMed  Google Scholar 

  • Krakow K, et al. EEG recording during fMRI experiments: image quality. Hum Brain Mapp. 2000;10(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  • Kuhl DE, Edwards RQ. Image separation radioisotope scanning 1. Radiology. 1963;80(4):653–62.

    Article  Google Scholar 

  • Larson CL, et al. Relations between PET‐derived measures of thalamic glucose metabolism and EEG alpha power. Psychophysiology. 1998;35(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence J, Rohren E, Provenzale J. PET/CT today and tomorrow in veterinary cancer diagnosis and monitoring: fundamentals, early results and future perspectives. Vet Comp Oncol. 2010;8(3):163–87.

    CAS  PubMed  Google Scholar 

  • Light GA, et al. Electroencephalography (EEG) and event‐related potentials (ERPs) with human participants. Curr Protoc Neurosci. 2010;6(25):1–24. doi: 10.1002/0471142301.ns0625s52.

  • Mahling M, et al. A comparative pO2 probe and [18F]-Fluoro-Azomycinarabino-Furanoside ([18F]FAZA) PET study reveals anesthesia-induced impairment of oxygenation and perfusion in tumor and muscle. PLoS One. 2015;10(4):e0124665.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marriott CJ, et al. High-resolution PET imaging and quantitation of pharmaceutical biodistributions in a small animal using avalanche photodiode detectors. J Nucl Med. 1994;35(8):1390–6.

    CAS  PubMed  Google Scholar 

  • Marzola P, Osculati F, Sbarbati A. High field MRI in preclinical research. Eur J Radiol. 2003;48(2):165–70.

    Article  PubMed  Google Scholar 

  • Masood Y, et al. Clinical validation of SPECT attenuation correction using x-ray computed tomography–derived attenuation maps: multicenter clinical trial with angiographic correlation. J Nucl Cardiol. 2005;12(6):676–86.

    Article  PubMed  Google Scholar 

  • Mazziotta JC, et al. Relating structure to function in vivo with tomographic imaging. Ciba Found Symp. 1991;163:93–101; discussion 101–12.

    CAS  PubMed  Google Scholar 

  • Meier D, et al. A SPECT camera for combined MRI and SPECT for small animals. Nucl Instrum Methods Phys Res A. 2011;652(1):731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirsattari SM, et al. EEG monitoring during functional MRI in animal models. Epilepsia. 2007;48(s4):37–46.

    Article  PubMed  Google Scholar 

  • Mulder WJ, et al. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett. 2006;6(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  • Nekolla SG, Martinez-Moller A. Attenuation correction in cardiac PET: to raise awareness for a problem which is as old as PET/CT. J Nucl Cardiol. 2015;22(6):1296–9.

    Article  PubMed  Google Scholar 

  • Ng SK, et al. SU-E-J-42: Evaluation of Fiducial Markers for Ultrasound and X-Ray Images used for motion tracking in Pancreas SBRT. Med Phys. 2015;42(6):3273.

    Google Scholar 

  • Poeppel TD, et al. PET/CT for the staging and follow-up of patients with malignancies. Eur J Radiol. 2009;70(3):382–92.

    Article  CAS  PubMed  Google Scholar 

  • Prout DL, Silverman RW, Chatziioannou A. Detector concept for OPET-a combined PET and optical imaging system. IEEE Trans Nucl Sci. 2004;51(3):752–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray P, Wu AM, Gambhir SS. Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res. 2003;63(6):1160–5.

    CAS  PubMed  Google Scholar 

  • Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt. 2001;6(4):432–40.

    Article  CAS  PubMed  Google Scholar 

  • Ruf J, et al. Impact of image fusion and attenuation correction by SPECT-CT on the scintigraphic detection of parathyroid adenomas. Nuklearmedizin. 2007;46(1):15–21.

    CAS  PubMed  Google Scholar 

  • Samarin A, et al. Image registration accuracy of an in-house developed patient transport system for PET/CT + MR and SPECT + CT imaging. Nucl Med Commun. 2015;36(2):194–200.

    Article  PubMed  Google Scholar 

  • Schlemmer HP, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248(3):1028–35.

    Article  PubMed  Google Scholar 

  • Schreckenberger M, et al. The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. Neuroimage. 2004;22(2):637–44.

    Article  PubMed  Google Scholar 

  • Schurrat T, et al. Molecular gastrin receptor localisation in mice using high-resolution SPET-MRI image fusion. Eur J Nucl Med Mol Imaging. 2003;30(5):800.

    Article  PubMed  Google Scholar 

  • Shah NJ, et al. Advances in multimodal neuroimaging: hybrid MR–PET and MR–PET–EEG at 3T and 9.4 T. J Magn Reson. 2013;229:101–15.

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, et al. Simultaneous PET and MR imaging. Phys Med Biol. 1997;42(10):1965–70.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Winter WR, Nunez PL. Source analysis of EEG oscillations using high-resolution EEG and MEG. Prog Brain Res. 2006;159:29–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang J, Rahmim A. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy. Phys Med Biol. 2015;60(1):31–48.

    Article  PubMed  Google Scholar 

  • Tenney JR, et al. Corticothalamic modulation during absence seizures in rats: a functional MRI assessment. Epilepsia. 2003;44(9):1133–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tombacz E, et al. Magnetic iron oxide nanoparticles: recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem Biophys Res Commun. 2015;468(3):442–53.

    Article  CAS  PubMed  Google Scholar 

  • Treglia G, et al. Diagnostic performance of PET/CT with tracers other than F-18-FDG in oncology: an evidence-based review. Clin Transl Oncol. 2014;16(9):770–5.

    Article  CAS  PubMed  Google Scholar 

  • van der Geest T, et al. [(18)]F FDG PET/CT imaging to monitor the therapeutic effect of liposome-encapsulated prednisolone in experimental rheumatoid arthritis. J Control Release. 2015;209:20–6.

    Article  PubMed  Google Scholar 

  • Wagenaar DJ, et al. Rationale for the combination of nuclear medicine with magnetic resonance for pre-clinical imaging. Technol Cancer Res Treat. 2006;5(4):343–50.

    Article  PubMed  Google Scholar 

  • Wagenaar D, et al. A multi-ring small animal CZT system for simultaneous SPECT/MRI imaging. in Society of Nuclear Medicine Annual Meeting Abstracts. 2007. Soc Nuclear Med.

    Google Scholar 

  • Wehrl HF, et al. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S56–68.

    Article  PubMed  Google Scholar 

  • Wehrl HF, et al. Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magn Reson Med. 2011;65(1):269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wehrl HF, et al. Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med. 2013;19(9):1184–9.

    Article  CAS  PubMed  Google Scholar 

  • Wehrl HF, et al. Preclinical and translational PET/MR imaging. J Nucl Med. 2014;55(Supplement 2):11S–8.

    Article  CAS  PubMed  Google Scholar 

  • Wehrl HF, et al. Combined PET/MR: a technology becomes mature. J Nucl Med. 2015;56(2):165–8.

    Article  PubMed  Google Scholar 

  • Weissler B, et al. A digital preclinical PET/MRI insert and initial results. IEEE Trans Med Imaging. 2015;34(11):2258–70.

    Article  PubMed  Google Scholar 

  • Winslow TB, et al. A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy. Int J Hyperthermia. 2015;31(6):1–9.

    Article  Google Scholar 

  • Wurslin C, et al. Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med. 2013;54(3):464–71.

    Article  PubMed  Google Scholar 

  • Xu H, et al. Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies. Appl Opt. 2005;44(11):2177–88.

    Article  PubMed  Google Scholar 

  • Yang X, et al. Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging. Rev Sci Instrum. 2010;81(5):054304.

    Article  PubMed  Google Scholar 

  • Yoon HS, et al. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J Nucl Med. 2012;53(4):608–14.

    Article  CAS  PubMed  Google Scholar 

  • Zaidi H. Molecular imaging of small animals. New York: Springer; 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans F. Wehrl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wehrl, H.F., Amend, M., Thielcke, A. (2017). Multimodal Imaging and Image Fusion. In: Kiessling, F., Pichler, B., Hauff, P. (eds) Small Animal Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42202-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42202-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42200-8

  • Online ISBN: 978-3-319-42202-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics