Skip to main content

Nanoparticles for Photoacoustic Imaging of Vasculature

  • Chapter
  • First Online:
Design and Applications of Nanoparticles in Biomedical Imaging

Abstract

Photoacoustic imaging (PAI) is a multi-scale, multi-contrast biomedical imaging modality that can provide anatomical, functional, metabolic, and molecular information about tissue. PAI offers up to submicron resolution and several centimeters penetration depth, employing various endogenous or exogenous contrasts. In particular, because nanoparticles strongly absorb near infrared light, they enable high-contrast PAI with improved detection sensitivity at depths. In this chapter, we review the use of nanoparticles to enhance the performance of PAI in a wide range of biomedical applications, in particular in imaging vasculature. By using engineered nanoparticles with different structures and functions, PAI can target specific molecules in disease associated endothelial cells. By manipulating nanoparticles with light or ultrasound, PAI can also guide therapy. Overall, nanoparticle-enhanced PAI shows promising potential for high-sensitivity, deep-tissue imaging, especially for vasculature imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kruger RA. Photoacoustic ultrasound. Med Phys. 1994;21:127–31.

    Article  CAS  PubMed  Google Scholar 

  2. Oraevsky AA, Jacques SL, Tittel FK. Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl Opt. 1997;36:402–15.

    Article  CAS  PubMed  Google Scholar 

  3. Wang XD, Pang YJ, Ku G, Xie XY, Stoica G, Wang LHV. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol. 2003;21:803–6.

    Article  CAS  PubMed  Google Scholar 

  4. Wang LHV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335:1458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jose J, Manohar S, Kolkman RGM, Steenbergen W, van Leeuwen TG. Imaging of tumor vasculature using Twente photoacoustic systems. J Biophotonics. 2009;2:701–17.

    Article  CAS  PubMed  Google Scholar 

  6. Kolkman RGM, Hondebrink E, Steenbergen W, de Mul FFM. In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor. IEEE J Sel Top Quant. 2003;9:343–6.

    Article  CAS  Google Scholar 

  7. Ku G, Wang XD, Xie XY, Stoica G, Wang LHV. Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography. Appl Opt. 2005;44:770–5.

    Article  PubMed  Google Scholar 

  8. Li ML, Oh JT, Xie XY, Ku G, Wang W, Li C, et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc IEEE. 2008;96:481–9.

    Article  CAS  Google Scholar 

  9. Ermilov SA, Khamapirad T, Conjusteau A, Leonard MH, Lacewell R, Mehta K, et al. Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt. 2009;14:024007.

    Article  PubMed  Google Scholar 

  10. Manohar S, Vaartjes SE, van Hespen JCG, Klaase JM, van den Engh FM, Steenbergen W, et al. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express. 2007;15:12277–85.

    Article  PubMed  Google Scholar 

  11. Wang LV. Photoacoustic tomography. Scholarpedia. 2014;9:10278.

    Article  Google Scholar 

  12. Yao J, Wang LV. Sensitivity of photoacoustic microscopy. Photoacoustics. 2014;2:87–101.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ray A, Rajian JR, Lee YE, Wang X, Kopelman R. Lifetime-based photoacoustic oxygen sensing in vivo. J Biomed Opt. 2012;17:057004.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maslov K, Zhang HF, Hu S, Wang LV. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett. 2008;33:929–31.

    Article  PubMed  Google Scholar 

  15. Li L, Yeh CH, Hu S, Wang LD, Soetikno BT, Chen RM, et al. Fully motorized optical-resolution photoacoustic microscopy. Opt Lett. 2014;39:2117–20.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Forest SE, Simon JD. Wavelength-dependent photoacoustic calorimetry study of melanin. Photochem Photobiol. 1998;68:296–8.

    Article  CAS  PubMed  Google Scholar 

  17. Viator JA, Komadina J, Svaasand LO, Aguilar G, Choi B, Nelson JS. A comparative study of photoacoustic and reflectance methods for determination of epidermal melanin content. J Investig Dermatol. 2004;122:1432–9.

    Article  CAS  PubMed  Google Scholar 

  18. Szakall M, Huszar H, Bozoki Z, Szabo G. On the pressure dependent sensitivity of a photoacoustic water vapor detector using active laser modulation control. Infrared Phys Technol. 2006;48:192–201.

    Article  CAS  Google Scholar 

  19. Xu Z, Li C, Wang LV. Photoacoustic tomography of water in phantoms and tissue. J Biomed Opt. 2010;15:036019.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu Z, Zhu Q, Wang LV. In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury. J Biomed Opt. 2011;16:066020.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Allen TJ, Hall A, Dhillon AP, Owen JS, Beard PC. Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range. J Biomed Opt. 2012;17:061209.

    Article  PubMed  Google Scholar 

  22. Wang B, Karpiouk A, Yeager D, Amirian J, Litovsky S, Smalling R, et al. Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood. Opt Lett. 2012;37:1244–6.

    Article  PubMed  Google Scholar 

  23. Wang P, Wang P, Wang H-W, Cheng J-X. Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration. J Biomed Opt. 2012;17:096010.

    PubMed Central  Google Scholar 

  24. Bugs MR, Cornelio ML. Analysis of the ethidium bromide bound to DNA by photoacoustic and FTIR spectroscopy. Photochem Photobiol. 2001;74:512–20.

    Article  CAS  PubMed  Google Scholar 

  25. Yao DK, Maslov K, Shung KK, Zhou QF, Wang LV. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt Lett. 2010;35:4139–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Di Primo C, Deprez E, Sligar SG, Hoa GHB. Origin of the photoacoustic signal in cytochrome p-450(cam): Role of the Arg186-Asp251-Lys178 bifurcated salt bridge. Biochemistry. 1997;36:112–8.

    Article  PubMed  Google Scholar 

  27. Zhang C, Zhang YS, Yao DK, Xia Y, Wang LV. Label-free photoacoustic microscopy of cytochromes. J Biomed Opt. 2013;18:20504.

    Article  PubMed  Google Scholar 

  28. Esenaliev RO, Karabutov AA, Oraevsky AA. Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE J Sel Top Quantum Electron. 1999;5:981–8.

    Article  CAS  Google Scholar 

  29. Ku G, Wang LV. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett. 2005;30:507–9.

    Article  PubMed  Google Scholar 

  30. Kim C, Erpelding TN, Jankovic L, Pashley MD, Wang LV. Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed Opt Express. 2010;1:278–84.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xing W, Wang L, Maslov K, Wang LV. Integrated optical- and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle. Opt Lett. 2013;38:52–4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Song KH, Wang LV. Deep reflection-mode photoacoustic imaging of biological tissue. J Biomed Opt. 2007;12:060503.

    Article  PubMed  Google Scholar 

  33. Gamelin J, Maurudis A, Aguirre A, Huang F, Guo PY, Wang LV, et al. A real-time photoacoustic tomography system for small animals. Opt Express. 2009;17:10489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xia J, Chatni MR, Maslov K, Guo Z, Wang K, Anastasio M, et al. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J Biomed Opt. 2012;17:050506.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yao J, Kaberniuk AA, Li L, Shcherbakova DM, Zhang R, Wang L, et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat Meth. 2016;13:67–73.

    CAS  Google Scholar 

  36. Nasiriavanaki M, Xia J, Wan HL, Bauer AQ, Culver JP, Wang LV. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc Natl Acad Sci U S A. 2014;111:21–6.

    Article  CAS  PubMed  Google Scholar 

  37. Yao J, Wang L, Yang JM, Maslov KI, Wong TT, Li L, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods. 2015;12:407–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang H, Maslov K, Wang LV. Photoacoustic doppler effect from flowing small light-absorbing particles. Phys Rev Lett. 2007;99:184501.

    Article  PubMed  Google Scholar 

  39. Yao J, Maslov KI, Zhang Y, Xia Y, Wang LV. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J Biomed Opt. 2011;16:076003.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oladipupo S, Hu S, Kovalski J, Yao J, Santeford A, Sohn RE, et al. VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting. Proc Natl Acad Sci U S A. 2011;108:13264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oladipupo SS, Hu S, Santeford AC, Yao J, Kovalski JR, Shohet RV, et al. Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence. Blood. 2011;117:4142–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Agarwal A, Shao X, Rajian JR, Zhang H, Chamberland DL, Kotov NA, et al. Dual-mode imaging with radiolabeled gold nanorods. J Biomed Opt. 2011;16:051307.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen Y-S, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, et al. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express. 2010;18:8867–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. You J, Zhou J, Zhou M, Liu Y, Robertson JD, Liang D, et al. Pharmacokinetics, clearance, and biosafety of polyethylene glycol-coated hollow gold nanospheres. Part Fibre Toxicol. 2014;11:26.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang YW, Xie XY, Wang XD, Ku G, Gill KL, O'Neal DP, et al. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 2004;4:1689–92.

    Article  CAS  Google Scholar 

  46. Li ML, Wang JC, Schwartz JA, Gill-Sharp KL, Stoica G, Wang LV. In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt. 2009;14:010507.

    Article  PubMed  Google Scholar 

  47. Yang XM, Skrabalak SE, Li ZY, Xia YN, Wang LHV. Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent. Nano Lett. 2007;7:3798–802.

    Article  CAS  PubMed  Google Scholar 

  48. Song KH, Kim C, Cobley CM, Xia Y, Wang LV. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett. 2009;9:183–8.

    Article  CAS  PubMed  Google Scholar 

  49. Agarwal A, Huang SW, O'Donnell M, Day KC, Day M, Kotov N, et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys. 2007;102:064701.

    Article  Google Scholar 

  50. Eghtedari M, Liopo AV, Copland JA, Oraevslty AA, Motamedi M. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett. 2009;9:287–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eghtedari M, Oraevsky A, Copland JA, Kotov NA, Conjusteau A, Motamedi M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 2007;7:1914–8.

    Article  CAS  PubMed  Google Scholar 

  52. Kim K, Huang SW, Ashkenazi S, O'Donnell M, Agarwal A, Kotov NA, et al. Photoacoustic imaging of early inflammatory response using gold nanorods. Appl Phys Lett. 2007;90:223901.

    Article  Google Scholar 

  53. Li PC, Wang CRC, Shieh DB, Wei CW, Liao CK, Poe C, et al. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express. 2008;16:18605–15.

    Article  CAS  PubMed  Google Scholar 

  54. Li PC, Wei CW, Liao CK, Chen CD, Pao KC, Wang CRC, et al. Photoacoustic imaging of multiple targets using gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:1642–7.

    Article  PubMed  Google Scholar 

  55. Song KH, Kim C, Maslov K, Wang LV. Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. Eur J Radiol. 2009;70:227–31.

    Article  PubMed  Google Scholar 

  56. Melancon MP, Zhou M, Li C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res. 2011;44:947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu W, Huang Q, Geng KB, Wen XX, Zhou M, Guzatov D, et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials. 2010;31:2617–26.

    Article  CAS  PubMed  Google Scholar 

  58. Lu W, Melancon MP, Xiong C, Huang Q, Elliott A, Song S, et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. 2011;71:6116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou M, Singhana B, Liu Y, Huang Q, Mitcham T, Wallace MJ, et al. Photoacoustic- and magnetic resonance-guided photothermal therapy and tumor vasculature visualization using theranostic magnetic gold nanoshells. J Biomed Nanotech. 2015;11:1442–50.

    Article  CAS  Google Scholar 

  60. Sharma P, Brown SC, Bengtsson N, Zhang QZ, Walter GA, Grobmyer SR, et al. Gold-speckled multimodal nanoparticles for noninvasive bioimaging. Chem Mater. 2008;20:6087–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ku G, Zhou M, Song SL, Huang Q, Hazle J, Li C. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano. 2012;6:7489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou M, Song S, Zhao J, Tian M, Li C. Theranostic CuS nanoparticles targeting folate receptors for PET image-guided photothermal therapy. J Mater Chem B. 2015;3:8939–48.

    Article  CAS  Google Scholar 

  63. Zhou M, Zhang R, Huang M, Lu W, Song S, Melancon MP, et al. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc. 2010;132:15351–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou M, Ku G, Pageon L, Li C. Theranostic probe for simultaneous in vivo photoacoustic imaging and confined photothermolysis by pulsed laser at 1064 nm in 4T1 breast cancer model. Nanoscale. 2014;6:15228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. de la Zerda A, Bodapati S, Teed R, May SY, Tabakman SM, Liu Z, et al. Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano. 2012;6:4694–701.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bouchard L-S, Anwar MS, Liu GL, Hann B, Xie ZH, Gray JW, et al. Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad Sci U S A. 2009;106:4085–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chamberland DL, Agarwal A, Kotov N, Fowlkes JB, Carson PL, Wang X. Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study. Nanotechnology. 2008;19:095101.

    Article  PubMed  Google Scholar 

  68. Lee HJ, Liu Y, Zhao J, Zhou M, Bouchard RR, Mitcham T, et al. In vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hollow gold nanoshells using fluorescence and photoacoustic imaging. J Controlled Release. 2013;172:152–8.

    Article  CAS  Google Scholar 

  69. Wang B, Yantsen E, Larson T, Karpiouk AB, Sethuraman S, Su JL, et al. Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett. 2009;9:2212–7.

    Article  CAS  PubMed  Google Scholar 

  70. Rouleau L, Berti R, Ng VW, Matteau-Pelletier C, Lam T, Saboural P, et al. VCAM-1-targeting gold nanoshell probe for photoacoustic imaging of atherosclerotic plaque in mice. Contrast Media Mol Imaging. 2013;8:27–39.

    Article  CAS  PubMed  Google Scholar 

  71. Wang B, Joshi P, Sapozhnikova V, Amirian J, Litovsky SH, Smalling R, et al. Intravascular photoacoustic imaging of macrophages using molecularly targeted gold nanoparticles. Proc SPIE 7564. 2010;75640A.

    Google Scholar 

  72. Zhou M, Li J, Liang S, Sood AK, Liang D, Li C. CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano. 2015;9(7):7085–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Song J, Yang X, Jacobson O, Huang P, Sun X, Lin L, et al. Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy. Adv Mater. 2015;27:4910–7.

    Article  CAS  PubMed  Google Scholar 

  74. Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, et al. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater. 2012;24:1868–72.

    Article  CAS  PubMed  Google Scholar 

  75. Qin H, Zhou T, Yang S, Chen Q, Xing D. Gadolinium(III)-gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation. Nanomedicine. 2013;8:1611–24.

    Article  CAS  PubMed  Google Scholar 

  76. Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater. 2011;10:324–32.

    Article  CAS  PubMed  Google Scholar 

  77. Kim J-W, Galanzha EI, Shashkov EV, Moon H-M, Zharov VP. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol. 2009;4:688–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang YM, Jeon M, Rich LJ, Hong H, Geng JM, Zhang Y, et al. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol. 2014;9:631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18:829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guo L, Lei L, Liren Z, Jun X, Wang LV. Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array. J Biomed Opt. 2015;20:066010.

    Article  Google Scholar 

  81. Zhang HF, Maslov K, Stoica G, Wang LHV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 2006;24:848–51.

    Article  CAS  PubMed  Google Scholar 

  82. Yao J, Maslov KI, Puckett ER, Rowland KJ, Warner BW, Wang LV. Double-illumination photoacoustic microscopy. Opt Lett. 2012;37:659–61.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhu L, Li L, Gao L, Wang LV. Multiview optical resolution photoacoustic microscopy. Optica. 2014;1:217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang C, Maslov K, Yao J, Wang LV. In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer. J Biomed Opt. 2012;17:116016.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhang C, Maslov K, Hu S, Chen R, Zhou Q, Shung KK, et al. Reflection-mode submicron-resolution in vivo photoacoustic microscopy. J Biomed Opt. 2012;17:0205011.

    Google Scholar 

  86. Zhang C, Maslov K, Wang LV. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt Lett. 2010;35:3195–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yao J, Wang L, Li C, Zhang C, Wang LV. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging. Phys Rev Lett. 2014;112:014302.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nedosekin DA, Galanzha EI, Dervishi E, Biris AS, Zharov VP. Super-resolution nonlinear photothermal microscopy. Small. 2014;10:135–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the John S. Dunn Foundation (CL), by the US National Institutes of Health grants DP1 EB016986 (NIH Director’s Pioneer Award, LHW), R01 CA186567 (NIH Director’s Transformative Research Award, LHW), and U01 NS090579 (BRAIN Initiative, LHW). L.V. Wang has a financial interest in Endra, Inc., and Microphotoacoustics, Inc., which, however, did not support this work. The other authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong. V. Wang or Chun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, M., Li, L., Yao, J., Bouchard, R.R., Wang, L.V., Li, C. (2017). Nanoparticles for Photoacoustic Imaging of Vasculature. In: Bulte, J., Modo, M. (eds) Design and Applications of Nanoparticles in Biomedical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42169-8_16

Download citation

Publish with us

Policies and ethics