Skip to main content

Nanoparticles for PET Imaging of Tumors and Cancer Metastasis

  • Chapter
  • First Online:
Book cover Design and Applications of Nanoparticles in Biomedical Imaging

Abstract

Positron emission tomography (PET) is a highly translational imaging modality with high sensitivity for oncological imaging. A wide range of classes of nanoparticles have been radiolabeled with a variety of positron-emitting radionuclides; however, the vast majority of nanoparticles have been labeled with longer-lived Cu-64 (T 1/2 = 12.7 h) and Zr-89 (T 1/2 = 78.4 h), due to their relatively slow clearance from the blood into tumors. PET imaging with nanoparticles has been investigated with agents that passively accumulate in tumors via the enhanced permeation and retention (EPR) effect, and nanoparticles have also been conjugated to targeting agents that include peptides and antibodies (or fragmented constructs thereof) for more active receptor-based tumor targeting. This chapter provides an overview of nanoparticle-based PET agents that have been developed for tumor targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook G. Oncological molecular imaging: nuclear medicine techniques. Br J Radiol. 2014.

    Google Scholar 

  2. Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, et al. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem. 2004;47(6):1465–74.

    Article  CAS  PubMed  Google Scholar 

  3. Jensen AI, Binderup T, Kumar EP, Kjaer A, Rasmussen PH, Andresen TL. Positron emission tomography based analysis of long-circulating cross-linked triblock polymeric micelles in a U87MG mouse xenograft model and comparison of DOTA and CB-TE2A as chelators of copper-64. Biomacromolecules. 2014;15(5):1625–33. doi:10.1021/bm401871w.

    Article  CAS  PubMed  Google Scholar 

  4. Deri MA, Ponnala S, Zeglis BM, Pohl G, Dannenberg JJ, Lewis JS, et al. Alternative chelator for (8)(9)Zr radiopharmaceuticals: radiolabeling and evaluation of 3,4,3-(LI-1,2-HOPO). J Med Chem. 2014;57(11):4849–60. doi:10.1021/jm500389b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pandya DN, Pailloux S, Tatum D, Magda D, Wadas TJ. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89. Chem Commun (Camb). 2015;51(12):2301–3. doi:10.1039/c4cc09256b.

    Article  CAS  Google Scholar 

  6. Lee JE, Lee N, Kim T, Kim J, Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res. 2011;44(10):893–902. doi:10.1021/ar2000259.

    Article  CAS  PubMed  Google Scholar 

  7. Rosenholm JM, Mamaeva V, Sahlgren C, Linden M. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine (Lond). 2012;7(1):111–20. doi:10.2217/nnm.11.166.

    Article  CAS  Google Scholar 

  8. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, et al. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano. 2011;5(5):4131–44. doi:10.1021/nn200809t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134(13):5722–5. doi:10.1021/ja211035w.

    Article  CAS  PubMed  Google Scholar 

  10. Caltagirone C, Bettoschi A, Garau A, Montis R. Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev. 2015;44(14):4645–71. doi:10.1039/c4cs00270a.

    Article  CAS  PubMed  Google Scholar 

  11. Taylor KM, Kim JS, Rieter WJ, An H, Lin W, Lin W. Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc. 2008;130(7):2154–5. doi:10.1021/ja710193c.

    Article  CAS  PubMed  Google Scholar 

  12. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6(16):1794–805. doi:10.1002/smll.201000538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee SB, Kim HL, Jeong HJ, Lim ST, Sohn MH, Kim DW. Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body. Angew Chem Int Ed Engl. 2013;52(40):10549–52. doi:10.1002/anie.201304026.

    Article  CAS  PubMed  Google Scholar 

  14. Kim DW. Bioorthogonal click chemistry for fluorine-18 labeling protocols under physiological friend reaction condition. J Fluor Chem. 2015;174:142–7. doi:10.1016/j.jfluchem.2014.11.009.

    Article  CAS  Google Scholar 

  15. Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S, et al. Synthesis, characterization, and biodistribution of multiple 89Zr-labeled pore-expanded mesoporous silica nanoparticles for PET. Nanoscale. 2014;6(9):4928–35. doi:10.1039/c3nr06800e.

    Article  CAS  PubMed  Google Scholar 

  16. Chen F, Nayak TR, Goel S, Valdovinos HF, Hong H, Theuer CP, et al. In vivo tumor vasculature targeted PET/NIRF imaging with TRC105(Fab)-conjugated, dual-labeled mesoporous silica nanoparticles. Mol Pharm. 2014;11(11):4007–14. doi:10.1021/mp500306k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kang WJ, Lee J, Lee YS, Cho S, Ali BA, Al-Khedhairy AA, et al. Multimodal imaging probe for targeting cancer cells using uMUC-1 aptamer. Colloids Surf B Biointerfaces. 2015;136:134–40. doi:10.1016/j.colsurfb.2015.09.004.

    Article  CAS  PubMed  Google Scholar 

  18. Chakravarty R, Goel S, Hong H, Chen F, Valdovinos HF, Hernandez R, et al. Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery. Nanomedicine (Lond). 2015;10(8):1233–46. doi:10.2217/nnm.14.226.

    Article  CAS  Google Scholar 

  19. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev. 2011;40(1):44–56. doi:10.1039/b821763g.

    Article  CAS  PubMed  Google Scholar 

  20. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev. 2008;37(9):1896–908. doi:10.1039/b712170a.

    Article  CAS  PubMed  Google Scholar 

  21. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346. doi:10.1021/cr030698+.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, et al. Gold nanocages as photothermal transducers for cancer treatment. Small. 2010;6(7):811–7. doi:10.1002/smll.200902216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Yuan H, Kersey FR, Register JK, Parrott MC, Vo-Dinh T. Plasmonic gold nanostars for multi-modality sensing and diagnostics. Sensors. 2015;15(2):3706–20. doi:10.3390/s150203706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vo‐Dinh T, Liu Y, Fales AM, Ngo H, Wang HN, Register JK, et al. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(1):17–33. doi:10.1002/wnan.1283.

    Article  PubMed  CAS  Google Scholar 

  25. Khlebtsov N, Bogatyrev V, Dykman L, Khlebtsov B, Staroverov S, Shirokov A, et al. Analytical and theranostic applications of gold nanoparticles and multifunctional nanocomposites. Theranostics. 2013;3(3):167–80. doi:10.7150/thno.5716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brust M, Fink J, Bethell D, Schiffrin D, Kiely C. Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun. 1995;16:1655–6.

    Article  Google Scholar 

  27. Leff DV, Brandt L, Heath JR. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir. 1996;12(20):4723–30.

    Article  CAS  Google Scholar 

  28. Anshup A, Venkataraman JS, Subramaniam C, Kumar RR, Priya S, Kumar TS, et al. Growth of gold nanoparticles in human cells. Langmuir. 2005;21(25):11562–7.

    Article  CAS  PubMed  Google Scholar 

  29. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115–20.

    Article  CAS  PubMed  Google Scholar 

  30. Caruso F, Spasova M, Salgueiriño‐Maceira V, Liz‐Marzán L. Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv Mater. 2001;13(14):1090–4.

    Article  CAS  Google Scholar 

  31. Oldenburg SJ, Jackson JB, Westcott SL, Halas N. Infrared extinction properties of gold nanoshells. Appl Phys Lett. 1999;75(19):2897–9.

    Article  CAS  Google Scholar 

  32. Chen J, McLellan JM, Siekkinen A, Xiong Y, Li Z-Y, Xia Y. Facile synthesis of gold-silver nanocages with controllable pores on the surface. J Am Chem Soc. 2006;128(46):14776–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li Z-Y, et al. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005;5(3):473–7.

    Article  CAS  PubMed  Google Scholar 

  34. Giersig M, Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir. 1993;9(12):3408–13.

    Article  CAS  Google Scholar 

  35. Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol. 2008;26(10):552–8. http://dx.doi.org/10.1016/j.tibtech.2008.06.007.

    Article  CAS  PubMed  Google Scholar 

  36. Xie H, Diagaradjane P, Deorukhkar AA, Goins B, Bao A, Phillips WT, et al. Integrin α(v)β(3)-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int J Nanomedicine. 2011;6:259–69. doi:10.2147/ijn.s15479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou M, Zhang R, Huang M, Lu W, Song S, Melancon MP, et al. A chelator-free multifunctional [64Cu] CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc. 2010;132(43):15351–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R, et al. Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew Chem Int Ed. 2014;53(1):156–9.

    Article  CAS  Google Scholar 

  39. Zhao Y, Sultan D, Detering L, Luehmann H, Liu Y. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64Cu-Au alloy nanoclusters. Nanoscale. 2014;6(22):13501–9. doi:10.1039/c4nr04569f.

    Article  CAS  PubMed  Google Scholar 

  40. Tian M, Lu W, Zhang R, Xiong C, Ensor J, Nazario J, et al. Tumor uptake of hollow gold nanospheres after intravenous and intra-arterial injection: PET/CT study in a rabbit VX2 liver cancer model. Mol Imaging Biol. 2013;15(5):614–24. doi:10.1007/s11307-013-0635-x.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tsoukalas C, Laurent G, Sánchez GJ, Tsotakos T, Bazzi R, Stellas D, et al. Initial in vitro and in vivo assessment of Au@ DTDTPA-RGD nanoparticles for Gd-MRI and 68Ga-PET dual modality imaging. EJNMMI Phys. 2015;2 Suppl 1:A89.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Karmani L, Bouchat V, Bouzin C, Levêque P, Labar D, Bol A, et al. 89Zr-labeled anti-endoglin antibody-targeted gold nanoparticles for imaging cancer: implications for future cancer therapy. Nanomedicine. 2014;9(13):1923–37.

    Article  CAS  PubMed  Google Scholar 

  43. Choi CH, Zuckerman JE, Webster P, Davis ME. Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci U S A. 2011;108(16):6656–61. doi:10.1073/pnas.1103573108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burns AA, Vider J, Ow H, Herz E, Penate-Medina O, Baumgart M, et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 2009;9(1):442–8. doi:10.1021/nl803405h.

    Article  CAS  PubMed  Google Scholar 

  45. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine. 2008;3(5):703–17. doi:10.2217/17435889.3.5.703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kharissova OV, Kharisov BI, Jiménez-Pérez VM, Flores BM, Méndez UO. Ultrasmall particles and nanocomposites: state of the art. RSC Adv. 2013;3(45):22648–82.

    Article  CAS  Google Scholar 

  47. Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 2009;5(1):126–34. doi:10.1002/smll.200800003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6(4):715–28. doi:10.2217/nnm.11.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. You J, Zhou J, Zhou M, Liu Y, Robertson JD, Liang D, et al. Pharmacokinetics, clearance, and biosafety of polyethylene glycol-coated hollow gold nanospheres. Part Fibre Toxicol. 2014;11(1):1–14.

    Article  CAS  Google Scholar 

  50. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2(1):47–52. doi:10.1038/nnano.2006.170.

    Article  CAS  PubMed  Google Scholar 

  51. Cui L, Lin Q, Jin CS, Jiang W, Huang H, Ding L, et al. A PEGylation-free biomimetic porphyrin nanoplatform for personalized cancer theranostics. ACS Nano. 2015;9(4):4484–95. doi:10.1021/acsnano.5b01077.

    Article  CAS  PubMed  Google Scholar 

  52. Pombo-García K, Zarschler K, Barreto JA, Hesse J, Spiccia L, Graham B, et al. Design, synthesis, characterisation and in vitro studies of hydrophilic, colloidally stable, 64Cu(ii)-labelled, ultra-small iron oxide nanoparticles in a range of human cell lines. RSC Adv. 2013;3(44):22443. doi:10.1039/c3ra43726d.

    Article  CAS  Google Scholar 

  53. Zhou M, Li J, Liang S, Sood AK, Liang D, Li C. CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano. 2015;9(7):7085–96. doi:10.1021/acsnano.5b02635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 2011;121(7):2768–80. doi:10.1172/JCI45600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6(260):260ra149. doi:10.1126/scitranslmed.3009524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Liu Y, Zhao Y, Sun B, Chen C. Understanding the toxicity of carbon nanotubes. Acc Chem Res. 2013;46(3):702–13. doi:10.1021/ar300028m.

    Article  CAS  PubMed  Google Scholar 

  57. Gao F, Cai P, Yang W, Xue J, Gao L, Liu R, et al. Ultrasmall [(64)Cu]Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging. ACS Nano. 2015;9(5):4976–86. doi:10.1021/nn507130k.

    Article  CAS  PubMed  Google Scholar 

  58. Truillet C, Bouziotis P, Tsoukalas C, Brugiere J, Martini M, Sancey L, et al. Ultrasmall particles for Gd-MRI and (68) Ga-PET dual imaging. Contrast Media Mol Imaging. 2015;10(4):309–19. doi:10.1002/cmmi.1633.

    Article  CAS  PubMed  Google Scholar 

  59. Yang BY, Moon S-H, Seelam SR, Jeon MJ, Lee Y-S, Lee DS, et al. Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging. Nanomedicine. 2015;10(12):1899–910.

    Article  CAS  PubMed  Google Scholar 

  60. Lee S, Chen X. Dual-modality probes for in vivo molecular imaging. Mol Imaging. 2009;8(2):87.

    CAS  PubMed  Google Scholar 

  61. Lee JH, Sherlock SP, Terashima M, Kosuge H, Suzuki Y, Goodwin A, et al. High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals. Magn Reson Med. 2009;62(6):1497–509.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, et al. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials. 2010;31(13):3667–73.

    Article  CAS  PubMed  Google Scholar 

  63. Tromsdorf UI, Bigall NC, Kaul MG, Bruns OT, Nikolic MS, Mollwitz B, et al. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett. 2007;7(8):2422–7.

    Article  CAS  PubMed  Google Scholar 

  64. Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 2010;31(11):3016–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee H-Y, Li Z, Chen K, Hsu AR, Xu C, Xie J, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med. 2008;49(8):1371–9.

    Article  CAS  PubMed  Google Scholar 

  66. Groult H, Ruiz-Cabello J, Pellico J, Lechuga-Vieco AV, Bhavesh R, Zamai M, et al. Parallel multifunctionalization of nanoparticles: a one-step modular approach for in vivo imaging. Bioconjug Chem. 2014;26(1):153–60.

    Article  PubMed  CAS  Google Scholar 

  67. Yang M, Cheng K, Qi S, Liu H, Jiang Y, Jiang H, et al. Affibody modified and radiolabeled gold–iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials. 2013;34(11):2796–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Caride VJ. Liposomes as carriers of imaging agents. Crit Rev Ther Drug Carrier Syst. 1985;1(2):121–53.

    CAS  PubMed  Google Scholar 

  69. Tilcock C, Ahkong QF, Fisher D. Polymer-derivatized technetium 99mTc-labeled liposomal blood pool agents for nuclear medicine applications. Biochim Biophys Acta Biomembr. 1993;1148(1):77–84.

    Article  CAS  Google Scholar 

  70. Krause W, Klopp R, Leike J, Sachse A, Schuhmann-Giampieri G. Liposomes in diagnostic imaging-comparison of modalities-in-vivo visualization of liposomes. J Liposome Res. 1995;5(1):1–26.

    Article  CAS  Google Scholar 

  71. Tilcock C, Philippot J, Schuber F. Imaging tools: liposomal agents for nuclear medicine, computed tomography, magnetic resonance, and ultrasound. Liposomes as tools in basic research and industry. 1995. p. 225–40.

    Google Scholar 

  72. Tilcock C. Delivery of contrast agents for magnetic resonance imaging, computed tomography, nuclear medicine and ultrasound. Adv Drug Deliv Rev. 1999;37(1):33–51.

    Article  CAS  PubMed  Google Scholar 

  73. Phillips WT, Goins BA, Bao A. Radioactive liposomes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(1):69–83.

    Article  CAS  PubMed  Google Scholar 

  74. Jensen AT, Binderup T, Andresen TL, Kjaer A, Rasmussen PH. PET imaging of liposomes labeled with an [(1)(8)F]-fluorocholesteryl ether probe prepared by automated radiosynthesis. J Liposome Res. 2012;22(4):295–305. doi:10.3109/08982104.2012.698418.

    Article  CAS  PubMed  Google Scholar 

  75. Emmetiere F, Irwin C, Viola-Villegas NT, Longo V, Cheal SM, Zanzonico P, et al. (18)F-labeled-bioorthogonal liposomes for in vivo targeting. Bioconjug Chem. 2013;24(11):1784–9. doi:10.1021/bc400322h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med. 2005;46(11):1898–906.

    CAS  PubMed  Google Scholar 

  77. Lubberink M, Herzog H. Quantitative imaging of 124I and 86Y with PET. Eur J Nucl Med Mol Imaging. 2011;38 Suppl 1:S10–8. doi:10.1007/s00259-011-1768-2.

    Article  PubMed  Google Scholar 

  78. Perez-Medina C, Abdel-Atti D, Zhang Y, Longo VA, Irwin CP, Binderup T, et al. A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting. J Nucl Med. 2014;55(10):1706–11. doi:10.2967/jnumed.114.141861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Seo JW, Mahakian LM, Tam S, Qin S, Ingham ES, Meares CF, et al. The pharmacokinetics of Zr-89 labeled liposomes over extended periods in a murine tumor model. Nucl Med Biol. 2015;42(2):155–63. doi:10.1016/j.nucmedbio.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  80. Abou DS, Thorek DL, Ramos NN, Pinkse MW, Wolterbeek HT, Carlin SD, et al. (89)Zr-labeled paramagnetic octreotide-liposomes for PET-MR imaging of cancer. Pharm Res. 2013;30(3):878–88. doi:10.1007/s11095-012-0929-8.

    Article  CAS  PubMed  Google Scholar 

  81. Petersen AL, Binderup T, Rasmussen P, Henriksen JR, Elema DR, Kjaer A, et al. 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials. 2011;32(9):2334–41. doi:10.1016/j.biomaterials.2010.11.059.

    Article  CAS  PubMed  Google Scholar 

  82. Henriksen JR, Petersen AL, Hansen AE, Frankaer CG, Harris P, Elema DR, et al. Remote loading of (64)Cu(2+) into liposomes without the use of ion transport enhancers. ACS Appl Mater Interfaces. 2015;7(41):22796–806. doi:10.1021/acsami.5b04612.

    Article  CAS  PubMed  Google Scholar 

  83. Petersen AL, Binderup T, Jolck RI, Rasmussen P, Henriksen JR, Pfeifer AK, et al. Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model. J Contr Release. 2012;160(2):254–63. doi:10.1016/j.jconrel.2011.12.038.

    Article  CAS  Google Scholar 

  84. Locke LW, Mayo MW, Yoo AD, Williams MB, Berr SS. PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes. Biomaterials. 2012;33(31):7785–93. doi:10.1016/j.biomaterials.2012.07.022.

    Article  CAS  PubMed  Google Scholar 

  85. Kang CM, Koo HJ, Lee S, Lee KC, Oh YK, Choe YS. 64Cu-labeled tetraiodothyroacetic acid-conjugated liposomes for PET imaging of tumor angiogenesis. Nucl Med Biol. 2013;40(8):1018–24. doi:10.1016/j.nucmedbio.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  86. Wong AW, Ormsby E, Zhang H, Seo JW, Mahakian LM, Caskey CF, et al. A comparison of image contrast with (64)Cu-labeled long circulating liposomes and (18)F-FDG in a murine model of mammary carcinoma. Am J Nucl Med Mol Imaging. 2013;3(1):32–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gong H, Peng R, Liu Z. Carbon nanotubes for biomedical imaging: the recent advances. Adv Drug Deliv Rev. 2013;65(15):1951–63. doi:10.1016/j.addr.2013.10.002.

    Article  CAS  PubMed  Google Scholar 

  88. McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One. 2007;2(9):e907. 10.1371/journal.pone.0000907.

    Google Scholar 

  89. Zeng D, Lee NS, Liu Y, Zhou D, Dence CS, Wooley KL, et al. 64Cu Core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano. 2012;6(6):5209–19. doi:10.1021/nn300974s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rossin R, Pan D, Qi K, Turner JL, Sun X, Wooley KL, et al. 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med. 2005;46(7):1210–8.

    PubMed  Google Scholar 

  91. Sun X, Wuest M, Weisman GR, Wong EH, Reed DP, Boswell CA, et al. Radiolabeling and in vivo behavior of copper-64-labeled cross-bridged cyclam ligands. J Med Chem. 2002;45:469–77.

    Article  CAS  PubMed  Google Scholar 

  92. Shokeen M, Pressly ED, Hagooly A, Zheleznyak A, Ramos N, Fiamengo AL, et al. Evaluation of multivalent, functional polymeric nanoparticles for imaging applications. ACS Nano. 2011;5(2):738–47. doi:10.1021/nn102278w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pressly ED, Pierce RA, Connal LA, Hawker CJ, Liu Y. Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer. Bioconjug Chem. 2013;24(2):196–204. doi:10.1021/bc300473x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Starmans LW, Hummelink MA, Rossin R, Kneepkens EC, Lamerichs R, Donato K, et al. Zr- and Fe-labeled polymeric micelles for dual modality PET and T-weighted MR imaging. Adv Healthc Mater. 2015. doi:10.1002/adhm.201500414.

    PubMed  Google Scholar 

  95. Yamamoto F, Yamahara R, Makino A, Kurihara K, Tsukada H, Hara E, et al. Radiosynthesis and initial evaluation of (18)F labeled nanocarrier composed of poly(L-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide. Nucl Med Biol. 2013;40(3):387–94. doi:10.1016/j.nucmedbio.2012.12.008.

    Article  CAS  PubMed  Google Scholar 

  96. Lux J, Chan M, Elst LV, Schopf E, Mahmoud E, Laurent S, et al. Metal chelating crosslinkers form nanogels with high chelation stability. J Mater Chem B Mater Biol Med. 2013;1(46):6359–64. doi:10.1039/C3TB21104E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lux J, White AG, Chan M, Anderson CJ, Almutairi A. Nanogels from metal-chelating crosslinkers as versatile platforms applied to copper-64 PET imaging of tumors and metastases. Theranostics. 2015;5(3):277–88. doi:10.7150/thno.10904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Black KC, Wang Y, Luehmann HP, Cai X, Xing W, Pang B, et al. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano. 2014;8(5):4385–94. doi:10.1021/nn406258m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R, et al. Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew Chem Int Ed Engl. 2014;53(1):156–9. doi:10.1002/anie.201308494.

    Article  CAS  PubMed  Google Scholar 

  100. Liu TW, Macdonald TD, Jin CS, Gold JM, Bristow RG, Wilson BC, et al. Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano. 2013;7(5):4221–32. doi:10.1021/nn400669r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Heng BC, Zhao X, Xiong S, Ng KW, Boey FY, Loo JS. Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format. Arch Toxicol. 2011;85(6):695–704. doi:10.1007/s00204-010-0608-7.

    Article  CAS  PubMed  Google Scholar 

  102. Osmond MJ, McCall MJ. Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology. 2010;4(1):15–41. doi:10.3109/17435390903502028.

    Article  CAS  PubMed  Google Scholar 

  103. Zhou J, Xu NS, Wang ZL. Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv Mater. 2006;18:2432–5.

    Article  CAS  Google Scholar 

  104. Lee CM, Jeong HJ, Kim DW, Sohn MH, Lim ST. The effect of fluorination of zinc oxide nanoparticles on evaluation of their biodistribution after oral administration. Nanotechnology. 2012;23(20):205102. doi:10.1088/0957-4484/23/20/205102.

    Article  PubMed  CAS  Google Scholar 

  105. Hong H, Wang F, Zhang Y, Graves SA, Eddine SB, Yang Y, et al. Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS Appl Mater Interfaces. 2015;7(5):3373–81. doi:10.1021/am508440j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shi H-Y, Deng B, Zhong S-L, Wang L, Xu A-W. Synthesis of zinc oxide nanoparticles with strong, tunable and stable visible light emission by solid-state transformation of Zn (II)-organic coordination polymers. J Mater Chem. 2011;21(33):12309–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn J. Anderson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abadjian, MC.Z., Choi, J., Anderson, C.J. (2017). Nanoparticles for PET Imaging of Tumors and Cancer Metastasis. In: Bulte, J., Modo, M. (eds) Design and Applications of Nanoparticles in Biomedical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42169-8_11

Download citation

Publish with us

Policies and ethics