Skip to main content

PET/SPECT/MRI Multimodal Nanoparticles

  • Chapter
  • First Online:
Design and Applications of Nanoparticles in Biomedical Imaging

Abstract

Hybrid imaging is an emerging technology that typically fuses a combination of high-sensitivity, nuclear imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT), with high-resolution, anatomical imaging using computed tomography (CT) or magnetic resonance imaging (MRI). CT was the first partner in hybrid imaging systems and modern interest has focused on development of MRI hybrids. To fully exploit the benefits of hybrid imaging technology, researchers have been investigating the use of radiolabeled and paramagnetic, nanoparticle-based probes to allow simultaneous imaging with PET/SPECT and MRI for a variety of applications including targeted tumor imaging, stem cell tracking, and monitoring of response to therapy. This chapter provides an overview of unique designs for nanoparticle-based SPECT/MRI and PET/MRI probes, and their imaging applications, reported in the period of 2010–2015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee S, Chen X. Dual-modality probes for in vivo molecular imaging. Mol Imaging. 2009;8(2):87.

    CAS  PubMed  Google Scholar 

  2. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29(3):193–207.

    Article  PubMed  Google Scholar 

  3. Cherry SR, editor. Multimodality imaging: beyond pet/ct and spect/ct. Seminars in nuclear medicine. Elsevier; 2009.

    Google Scholar 

  4. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41(8):1369–79.

    CAS  PubMed  Google Scholar 

  5. Cherry SR, Louie AY, Jacobs RE. The integration of positron emission tomography with magnetic resonance imaging. Proc IEEE. 2008;96(3):416–38.

    Article  CAS  Google Scholar 

  6. Garcia J, Tang T, Louie AY. Nanoparticle-based multimodal PET/MRI probes. Nanomedicine. 2015;10(8):1343–59.

    Article  CAS  PubMed  Google Scholar 

  7. Puttick S, Bell C, Dowson N, Rose S, Fay M. PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma. Drug Discov Today. 2015;20(3):306–17.

    Article  PubMed  Google Scholar 

  8. Rosales R. Potential clinical applications of bimodal PET‐MRI or SPECT‐MRI agents. J Label Compd Radiopharm. 2014;57(4):298–303.

    Article  CAS  Google Scholar 

  9. Bouziotis P, Psimadas D, Tsotakos T, Stamopoulos D, Tsoukalas C. Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr Top Med Chem. 2012;12(23):2694–702.

    Article  CAS  PubMed  Google Scholar 

  10. Singh N, Jenkins GJ, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1.

    Google Scholar 

  11. Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35.

    PubMed  PubMed Central  Google Scholar 

  12. Tsiapa I, Efthimiadou EK, Fragogeorgi E, Loudos G, Varvarigou AD, Bouziotis P, et al. 99mTc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment. J Colloid Interface Sci. 2014;433:163–75.

    Google Scholar 

  13. Cui X, Mathe D, Kovács N, Horvath I, Jauregui-Osoro M, Torres Martin de Rosales R, et al. Synthesis, characterization and application of core-shell Co0.16Fe2.84O4@NaYF4 (Yb, Er) and Fe3O4@NaYF4 (Yb, Tm) nanoparticle as tri-modal (MRI, PET/SPECT and optical) imaging agents. Bioconjug Chem. 2015.

    Google Scholar 

  14. Xue S, Zhang C, Yang Y, Zhang L, Cheng D, Zhang J, et al. 99mTc-labeled iron oxide nanoparticles for dual-contrast (T 1/T 2) magnetic resonance and dual-modality imaging of tumor angiogenesis. J Biomed Nanotechnol. 2015;11(6):1027–37.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng D, Li X, Zhang C, Tan H, Wang C, Pang L, et al. Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages. ACS Appl Mater Interfaces. 2015;7(4):2847–55.

    Article  CAS  PubMed  Google Scholar 

  16. Liu S, Jia B, Qiao R, Yang Z, Yu Z, Liu Z, et al. A novel type of dual-modality molecular probe for MR and nuclear imaging of tumor: preparation, characterization and in vivo application. Mol Pharm. 2009;6(4):1074–82.

    Article  CAS  PubMed  Google Scholar 

  17. Lee CM, Jeong HJ, Kim EM, Kim DW, Lim ST, Kim HT, et al. Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Magn Reson Med. 2009;62(6):1440–6.

    Article  CAS  PubMed  Google Scholar 

  18. Rangger C, Helbok A, Sosabowski J, Kremser C, Koehler G, Prassl R, et al. Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles. Int J Nanomedicine. 2013;8:4659.

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Vries A, Kok MB, Sanders HM, Nicolay K, Strijkers GJ, Grüll H. Multimodal liposomes for SPECT/MR imaging as a tool for in situ relaxivity measurements. Contrast Media Mol Imaging. 2012;7(1):68–75.

    Article  PubMed  Google Scholar 

  20. Truillet C, Bouziotis P, Tsoukalas C, Brugière J, Martini M, Sancey L et al. Ultrasmall particles for Gd‐MRI and 68Ga‐PET dual imaging. Contrast Media Mol Imaging. 2014.

    Google Scholar 

  21. Luo J, Wilson JD, Zhang J, Hirsch JI, Dorn HC, Fatouros PP, et al. A dual PET/MR imaging nanoprobe: 124I labeled Gd3N@ C80. Appl Sci. 2012;2(2):465–78.

    Article  CAS  Google Scholar 

  22. Laprise-Pelletier M, Bouchoucha M, Lagueux J, Chevallier P, Lecomte R, Gossuin Y, et al. Metal chelate grafting at the surface of mesoporous silica nanoparticles (MSNs): physico-chemical and biomedical imaging assessment. J Mater Chem B. 2015;3(5):748–58.

    Article  CAS  Google Scholar 

  23. Madru R, Kjellman P, Olsson F, Wingårdh K, Ingvar C, Ståhlberg F, et al. 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J Nucl Med. 2012;53(3):459–63.

    Article  CAS  PubMed  Google Scholar 

  24. de Rosales RTM, Tavaré R, Glaria A, Varma G, Protti A, Blower PJ. 99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem. 2011;22:455–65.

    Article  Google Scholar 

  25. Felber M, Alberto R. 99mTc radiolabelling of Fe3O4–Au core–shell and Au–Fe3O4 dumbbell-like nanoparticles. Nanoscale. 2015;7(15):6653–60.

    Google Scholar 

  26. Zhao Y, Yao Q, Tan H, Wu B, Hu P, Wu P, et al. Design and preliminary assessment of 99mTc-labeled ultrasmall superparamagnetic iron oxide-conjugated bevacizumab for single photon emission computed tomography/magnetic resonance imaging of hepatocellular carcinoma. J Radioanal Nucl Chem. 2014;299(3):1273–80.

    Article  CAS  Google Scholar 

  27. Madru R, Svenmarker P, Ingvar C, Ståhlberg F, Engels S-A, Knutsson L, et al. Development of a hybrid nanoprobe for triple-modality MR/SPECT/optical fluorescence imaging. Diagnostics. 2014;4(1):13–26.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Psimadas D, Baldi G, Ravagli C, Bouziotis P, Xanthopoulos S, Franchini MC, et al. Preliminary evaluation of a 99mTc labeled hybrid nanoparticle bearing a cobalt ferrite core: in vivo biodistribution. J Biomed Nanotechnol. 2012;8(4):575–85.

    Article  CAS  PubMed  Google Scholar 

  29. Tang Y, Zhang C, Wang J, Lin X, Zhang L, Yang Y, et al. MRI/SPECT/fluorescent tri-modal probe for evaluating the homing and therapeutic efficacy of transplanted mesenchymal stem cells in a rat ischemic stroke model. Adv Funct Mater. 2015;25(7):1024–34.

    Article  CAS  PubMed  Google Scholar 

  30. Deng S, Zhang W, Zhang B, Hong R, Chen Q, Dong J, et al. Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. J Nanopart Res. 2015;17(1):1–11.

    Article  Google Scholar 

  31. Chen J, Zhu S, Tong L, Li J, Chen F, Han Y, et al. Superparamagnetic iron oxide nanoparticles mediated 131I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice. BMC Cancer. 2014;14(1):114.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Misri R, Meier D, Yung AC, Kozlowski P, Häfeli UO. Development and evaluation of a dual-modality (MRI/SPECT) molecular imaging bioprobe. Nanomedicine. 2012;8(6):1007–16.

    CAS  PubMed  Google Scholar 

  33. Zeng J, Jia B, Qiao R, Wang C, Jing L, Wang F, et al. In situ 111 in-doping for achieving biocompatible and non-leachable 111In-labeled Fe3O4 nanoparticles. Chem Commun. 2014;50(17):2170–2.

    Google Scholar 

  34. Hoffman D, Sun M, Yang L, McDonagh PR, Corwin F, Sundaresan G, et al. Intrinsically radiolabelled [59Fe]-SPIONs for dual MRI/radionuclide detection. Am J Nucl Med Mol Imaging. 2014;4(6):548.

    Google Scholar 

  35. Rasaneh S, Rajabi H, Daha FJ. Activity estimation in radioimmunotherapy using magnetic nanoparticles. Chin J Cancer Res. 2015;27(2):203.

    PubMed  PubMed Central  Google Scholar 

  36. Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, et al. Intrinsically germanium‐69‐labeled iron oxide nanoparticles: synthesis and in‐vivo dual‐modality PET/MR imaging. Adv Mater. 2014;26(30):5119–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cho B-B, Park JH, Jung SJ, Lee J, Lee JH, Hur MG et al. Synthesis and characterization of 68Ga labeled Fe3O4 nanoparticles for positron emission tomography (PET) and magnetic resonance imaging (MRI). J Radioanal Nucl Chem. 2015:1–10.

    Google Scholar 

  38. Tu C, Ng TS, Jacobs RE, Louie AY. Multimodality PET/MRI agents targeted to activated macrophages. J Biol Inorg Chem. 2014;19(2):247–58.

    Article  CAS  PubMed  Google Scholar 

  39. Boros E, Bowen AM, Josephson L, Vasdev N, Holland JP. Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles. Chem Sci. 2015;6(1):225–36.

    Article  CAS  Google Scholar 

  40. Bhattacharya S. Radiation injury. Indian J Plastic Surg. 2010;43(Suppl):S91.

    Google Scholar 

  41. Zhu J, Zhang B, Tian J, Wang J, Chong Y, Wang X, et al. Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging. Nanoscale. 2015;7(8):3392–5.

    Article  CAS  PubMed  Google Scholar 

  42. Wong RM, Gilbert DA, Liu K, Louie AY. Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano. 2012;6(4):3461–7.

    Article  CAS  PubMed  Google Scholar 

  43. Yang M, Cheng K, Qi S, Liu H, Jiang Y, Jiang H, et al. Affibody modified and radiolabeled gold–iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials. 2013;34(11):2796–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen F, Ellison PA, Lewis CM, Hong H, Zhang Y, Shi S, et al. Chelator‐free synthesis of a dual‐modality PET/MRI agent. Angew Chem Int Ed. 2013;52(50):13319–23.

    Article  CAS  Google Scholar 

  45. Locatelli E, Gil L, Israel LL, Passoni L, Naddaka M, Pucci A, et al. Biocompatible nanocomposite for PET/MRI hybrid imaging. Int J Nanomed. 2012;7:6021.

    CAS  Google Scholar 

  46. Tang T, Tu C, Chow SY, Leung KH, Du S, Louie AY. Quantitative assessment of binding affinities for nanoparticles targeted to the vulnerable plaque. Bioconjug Chem. 2015;26(6):1086–94.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou J, Yu M, Sun Y, Zhang X, Zhu X, Wu Z, et al. Fluorine-18-labeled Gd 3+/Yb 3+/Er 3+ co-doped NaYF 4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials. 2011;32(4):1148–56.

    Article  CAS  PubMed  Google Scholar 

  48. S-m K, Chae MK, Yim MS, Jeong IH, Cho J, Lee C, et al. Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials. 2013;34(33):8114–21.

    Article  Google Scholar 

  49. Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, et al. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials. 2011;32(17):4151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Madru R, Tran TA, Axelsson J, Ingvar C, Bibic A, Ståhlberg F, et al. 68Ga-labeled superparamagnetic iron oxide nanoparticles (SPIONs) for multi-modality PET/MR/Cherenkov luminescence imaging of sentinel lymph nodes. Am J Nucl Med Mol Imaging. 2014;4(1):60.

    CAS  Google Scholar 

  51. Cui X, Belo S, Krüger D, Yan Y, de Rosales RT, Jauregui-Osoro M, et al. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials. 2014;35(22):5840–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thorek DL, Ulmert D, Diop N-FM, Lupu ME, Doran MG, Huang, R et al. Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun. 2014;5(3097).

    Google Scholar 

  53. Aryal S, Key J, Stigliano C, Landis MD, Lee DY, Decuzzi P. Positron emitting magnetic nanoconstructs for PET/MR imaging. Small. 2014;10(13):2688–96.

    Article  CAS  PubMed  Google Scholar 

  54. Wang H, Kumar R, Nagesha D, Duclos RI, Sridhar S, Gatley SJ. Integrity of 111In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. Nucl Med Biol. 2015;42(1):65–70.

    Google Scholar 

  55. Tsai CS, Liu WC, Chen HY, Hsu WC, editors. Preparation and characterization of Fe3O4 Magnetic nanoparticles labeled with Technetium-99m pertectnetate. App Mech Mater. 2014. Trans Tech Publ.

    Google Scholar 

  56. Debinski W, Tatter SB. Convection-enhanced delivery for the treatment of brain tumors. 2009.

    Google Scholar 

  57. Jarrett BR, Correa C, Ma KL, Louie AY. In vivo mapping of vascular inflammation using multimodal imaging. PLoS One. 2010;5(10):e13254.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelique Y. Louie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tang, T., Garcia, J., Louie, A.Y. (2017). PET/SPECT/MRI Multimodal Nanoparticles. In: Bulte, J., Modo, M. (eds) Design and Applications of Nanoparticles in Biomedical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42169-8_10

Download citation

Publish with us

Policies and ethics