Skip to main content

Cross Section Ratios

  • Chapter
  • First Online:
Jet Physics at the LHC

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 268))

  • 907 Accesses

Abstract

As demonstrated in the previous chapter, valuable insights can be gained from the measurement of absolute cross sections. However, they are subject to the totality of experimental and theoretical uncertainties. Therefore, it is worthwhile to contemplate alternative observables that are either insensitive or sensitive at a reduced level to the dominant sources of uncertainty. The possibility discussed in this chapter deals with cross section ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ATLAS additionally investigated the quantity \(N_\mathrm {32}\), which in contrast to \(R_\mathrm {32}\), receives not only a single entry per event, but one entry per jet in each event.

  2. 2.

    2.76 TeV is the baseline \(pp\) centre-of-mass energy for comparisons with heavy-ion (\(PbPb\)) collisions at the LHC with 2.76 TeV of energy per nucleon-nucleon pair.

References

  1. Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order. Phys. Rev. Lett. 88, 122003 (2002). doi:10.1103/PhysRevLett.88.122003, arXiv:hep-ph/0110315

  2. Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron hadron collisions. Phys. Rev. D 68, 094002 (2003). doi:10.1103/PhysRevD.68.094002, arXiv:hep-ph/0307268

  3. Z. Bern et al., Four-jet production at the large hadron collider at next-to-leading order in QCD. Phys. Rev. Lett. 109, 042001 (2012). doi:10.1103/PhysRevLett.109.042001, arXiv:1112.3940

  4. S. Badger, B. Biedermann, P. Uwer, V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \(\sqrt{s}=8\) TeV. Phys. Lett. B 718, 965 (2013). doi:10.1016/j.physletb.2012.11.029, arXiv:1209.0098

  5. S. Badger, B. Biedermann, P. Uwer, V. Yundin, Next-to-leading order QCD corrections to five jet production at the LHC. Phys. Rev. D 89, 034019 (2014). doi:10.1103/PhysRevD.89.034019, arXiv:1309.6585

  6. UA1 Collaboration, Comparison of three jet and two jet cross-sections in p anti-p collisions at the CERN SPS p anti-p collider. Phys. Lett. B 158, 494 (1985). doi:10.1016/0370-2693(85)90801-9

  7. UA2 Collaboration, Measurement of the strong coupling constant \(\alpha _s\) from a study of W bosons produced in association with jets. Phys. Lett. B 215, 175 (1988). doi:10.1016/0370-2693(88)91093-3

    Article  ADS  Google Scholar 

  8. CMS Collaboration, Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in \(pp\) collisions at \(\sqrt{s}\) = 7 TeV and first determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 73, 2604 (2013). doi:10.1140/epjc/s10052-013-2604-6, arXiv:1304.7498

  9. ATLAS Collaboration, Measurement of multi-jet cross-section ratios and determination of the strong coupling constant in proton-proton collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Technical report, ATLAS-CONF-2013-041, CERN, 2013

    Google Scholar 

  10. D0 Collaboration, Measurement of angular correlations of jets at \(\sqrt{s}=1.96\) TeV and determination of the strong coupling at high momentum transfers. Phys. Lett. B 718, 56 (2012). doi:10.1016/j.physletb.2012.10.003, arXiv:1207.4957

  11. M. Wobisch et al., A new quantity for studies of dijet azimuthal decorrelations. JHEP 01, 172 (2013). doi:10.1007/JHEP01(2013)172, arXiv:1211.6773

  12. CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277

  13. M. Diehl, Theory Uncertainties, p. 297 (Wiley-VCH Verlag GmbH & Co. KGaA, 2013). doi:10.1002/9783527653416.ch9

  14. D. Becciolini et al., Constraining new colored matter from the ratio of 3 to 2 jets cross sections at the LHC. Phys. Rev. D 91, 015010 (2015). doi:10.1103/PhysRevD.91.015010, arXiv:1403.7411

  15. R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). doi:10.1016/j.nuclphysb.2011.03.021, arXiv:1101.1300

  16. K.A. Olive and others (Particle Data Group), Review of particle physics. Chin. Phys. C. 38 (2014) 090001. doi:10.1088/1674-1137/38/9/090001

  17. ATLAS Collaboration, Measurement of inclusive jet and dijet production in \(pp\) collisions at \(\sqrt{s}=7\) TeV using the ATLAS detector. Phys. Rev. D 86 (2012) 014022. doi:10.1103/PhysRevD.86.014022, arXiv:1112.6297

  18. CMS Collaboration, Measurement of the inclusive jet cross section in pp collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. Lett. 107, 132001 (2011). doi:10.1103/PhysRevLett.107.132001, arXiv:1106.0208

  19. CMS Collaboration, Measurements of differential jet cross sections in proton-proton collisions at \(\sqrt{s}=7\) TeV with the CMS detector. Phys. Rev. D 87, 112002 (2013). doi:10.1103/PhysRevD.87.112002, arXiv:1212.6660

  20. M. Dasgupta, L. Magnea, G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders. JHEP 02, 055 (2008). doi:10.1088/1126-6708/2008/02/055, arXiv:0712.3014

  21. M. Cacciari, J. Rojo, G.P. Salam, G. Soyez, Quantifying the performance of jet definitions for kinematic reconstruction at the LHC. JHEP 12, 032 (2008). doi:10.1088/1126-6708/2008/12/032, arXiv:0810.1304

  22. G. Soyez, A Simple description of jet cross-section ratios. Phys. Lett. B 698, 59 (2011). doi:10.1016/j.physletb.2011.02.061, arXiv:1101.2665

  23. ZEUS Collaboration, Inclusive-jet cross sections in NC DIS at HERA and a comparison of the kT, anti-kT and SIScone jet algorithms. Phys. Lett. B 691, 127 (2010). doi:10.1016/j.physletb.2010.06.015, arXiv:1003.2923

  24. ALICE Collaboration, Measurement of the inclusive differential jet cross section in \(pp\) collisions at \(\sqrt{s} = 2.76\) TeV. Phys. Lett. B 722 (2013) 262. doi:10.1016/j.physletb.2013.04.026, arXiv:1301.3475

  25. CMS Collaboration, Measurement of the ratio of inclusive jet cross sections using the anti-\(k_T\) algorithm with radius parameters \(R = 0.5\) and \(0.7\) in pp collisions at \(\sqrt{s}\) = 7 TeV. Phys. Rev. D 90, 072006 (2014). doi:10.1103/PhysRevD.90.072006, arXiv:1406.0324

  26. M.L. Mangano, J. Rojo, Cross Section Ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity. JHEP 08, 010 (2012). doi:10.1007/JHEP08(2012)010, arXiv:1206.3557

  27. UA2 Collaboration, Measurement of the \(\sqrt{(}s)\) dependence of jet production at the CERN anti-p p collider. Phys. Lett. B 160, 349 (1985). doi:10.1016/0370-2693(85)91341-3

  28. UA1 Collaboration, Measurement of the inclusive jet cross-section at the CERN p anti-p collider. Phys. Lett. B 172, 461 (1986). doi:10.1016/0370-2693(86)90290-X

  29. CDF Collaboration, Comparison of jet production in \(\bar{p}p\) collisions at \(\sqrt{s} = 546\) GeV and 1800 GeV. Phys. Rev. Lett. 70, 1376 (1993). doi:10.1103/PhysRevLett.70.1376

  30. D0 Collaboration, High-\(p_T\) jets in \(\bar{p}p\) collisions at \(\sqrt{s} = 630\) GeV and 1800 GeV. Phys. Rev. D 64, 032003 (2001). doi:10.1103/PhysRevD.64.032003, arXiv:hep-ex/0012046

  31. J.D. Bjorken, Can we measure parton parton cross-sections? Phys. Rev. D 8, 4098 (1973). doi:10.1103/PhysRevD.8.4098

    Article  ADS  Google Scholar 

  32. J.D. Bjorken, E.A. Paschos, Inelastic electron proton and gamma proton scattering, and the structure of the nucleon. Phys. Rev. 185, 1975 (1969). doi:10.1103/PhysRev.185.1975

  33. R.P. Feynman, Very high-energy collisions of hadrons. Phys. Rev. Lett. 23, 1415 (1969). doi:10.1103/PhysRevLett.23.1415

  34. ATLAS Collaboration, Measurement of the inclusive jet cross section in \(pp\) collisions at \(\sqrt{s}=2.76\) TeV and comparison to the inclusive jet cross section at \(\sqrt{s}=7\) TeV using the ATLAS detector. Eur. Phys. J. C 73 (2013) 2509. doi:10.1140/epjc/s10052-013-2509-4, arXiv:1304.4739

  35. H. Terazawa, Subquark model of leptons and quarks. Phys. Rev. D 22, 184 (1980). doi:10.1103/PhysRevD.22.184

    Article  ADS  Google Scholar 

  36. E. Eichten, K.D. Lane, M.E. Peskin, New tests for quark and lepton substructure. Phys. Rev. Lett. 50, 811 (1983). doi:10.1103/PhysRevLett.50.811

  37. U. Baur, I. Hinchliffe, D. Zeppenfeld, Excited quark production at hadron colliders. Int. J. Mod. Phys. A 2, 1285 (1987). doi:10.1142/S0217751X87000661

    Article  ADS  Google Scholar 

  38. J.L. Hewett, T.G. Rizzo, Low-energy phenomenology of superstring inspired E(6) models. Phys. Rept. 183, 193 (1989). doi:10.1016/0370-1573(89)90071-9

    Article  ADS  Google Scholar 

  39. P.H. Frampton, S.L. Glashow, Chiral color: an alternative to the standard model. Phys. Lett. B 190, 157 (1987). doi:10.1016/0370-2693(87)90859-8

    Article  ADS  Google Scholar 

  40. E.H. Simmons, Coloron phenomenology. Phys. Rev. D 55, 1678 (1997). doi:10.1103/PhysRevD.55.1678, arXiv:hep-ph/9608269

  41. L. Randall, R. Sundrum, A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999). doi:10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221

  42. E. Fermi, Versuch einer Theorie der \(\beta \)-Strahlen. I). Z. Phys. 88, 161 (1934). doi:10.1007/BF01351864

    Article  ADS  MATH  Google Scholar 

  43. E. Fermi, Tentativo di una Teoria dei Raggi \(\beta \). Nuovo Cim. 11, 1 (1934). doi:10.1007/BF02959820

    Article  MATH  Google Scholar 

  44. E. Eichten, I. Hinchliffe, K.D. Lane, C. Quigg, Super collider physics. Rev. Mod. Phys. 56, 579 (1984). doi:10.1103/RevModPhys.56.579

  45. D0 Collaboration, The dijet mass spectrum and a search for quark compositeness in \(\bar{p}p\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. Lett. 82, 2457 (1999). doi:10.1103/PhysRevLett.82.2457, arXiv:hep-ex/9807014

  46. CMS Collaboration, Search for quark compositeness with the dijet centrality ratio in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. Lett. 105, 262001 (2010). doi:10.1103/PhysRevLett.105.262001, arXiv:1010.4439

  47. ATLAS Collaboration, Search for quark contact interactions in dijet angular distributions in \(pp\) collisions at \(\sqrt{s}=7\) TeV measured with the ATLAS detector. Phys. Lett. B 694 (2011) 327. doi:10.1016/j.physletb.2010.10.021, arXiv:1009.5069

  48. R.D. Cousins, V.L. Highland, Incorporating systematic uncertainties into an upper limit. Nucl. Instrum. Meth. A 320, 331 (1992). doi:10.1016/0168-9002(92)90794-5

    Article  ADS  Google Scholar 

  49. T. Junk, Confidence level computation for combining searches with small statistics. Nucl. Instrum. Meth. A434, 435 (1999). doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006

  50. A.L. Read, Presentation of search results: the CL(s) technique. J. Phys. G 28, 2693 (2002). doi:10.1088/0954-3899/28/10/313

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Rabbertz .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rabbertz, K. (2017). Cross Section Ratios. In: Jet Physics at the LHC. Springer Tracts in Modern Physics, vol 268. Springer, Cham. https://doi.org/10.1007/978-3-319-42115-5_5

Download citation

Publish with us

Policies and ethics