Interpreting Heterogeneous Geospatial Data Using Semantic Web Technologies

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9788)


The paper presents work on implementation of semantic technologies within a geospatial environment to provide a common base for further semantic interpretation. The work adds on the current works in similar areas where priorities are more on spatial data integration. We assert that having a common unified semantic view on heterogeneous datasets provides a dimension that allows us to extend beyond conventional concepts of searchability, reusability, composability and interoperability of digital geospatial data. It provides contextual understanding on geodata that will enhance effective interpretations through possible reasoning capabilities. We highlight this through use cases in disaster management and planned land use that are significantly different. This paper illustrates the work that firstly follows existing Semantic Web standards when dealing with vector geodata and secondly extends current standards when dealing with raster geodata and more advanced geospatial operations.


Heterogeneity Interoperability SDI CIP GeoSPARQL R2RML Semantification 



This project was funded by the German Federal Ministry of Education and Research ( Project Reference: 03FH032IX4).


  1. 1.
    GeoSPARQL - a geography query language for RDF data (2016). Accessed 17 Mar 2016
  2. 2.
    National Strategy for Critical Infrastructure Protection (CIP Strategy)Google Scholar
  3. 3.
    Socop, geospatial ontologies (2016). Accessed 16 Mar 2016
  4. 4.
    Arpinar, I.B., Sheth, A., Ramakrishnan, C., Usery, L., Azami, M.: Po kwan, M.: Geospatial ontology development and semantic analytics. In: Transactions in GIS, pp. 1–15. Blackwell Publishing, Boston (2005)Google Scholar
  5. 5.
    Athanasiou, S., Hladky, D., Giannopoulos, G., Garcia-Rojas, A., Lehmann, J.: GeoKnow: making the web an exploratory place for geospatial knowledge. Eur. Res. Consortium Inf. Math. News 96, 12–13 (2014)Google Scholar
  6. 6.
    Battle, R., Kolas, D.: GeoSPARQL: enabling a geospatial semantic web. Semant. Web J. 3(4), 355–370 (2011)Google Scholar
  7. 7.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001). CrossRefGoogle Scholar
  8. 8.
    Bizid, I., Faiz, S., Boursier, P., Yusuf, J.C.M.: Integration of heterogeneous spatial databases for disaster management. In: Parsons, J., Chiu, D. (eds.) ER Workshops 2013. LNCS, vol. 8697, pp. 77–86. Springer, Heidelberg (2014). Google Scholar
  9. 9.
    Bossomaier, T., Hope, B.A.: Online GIS and Spatial Metadata. CRC Press, Boca Raton (2015)Google Scholar
  10. 10.
    Coppola, D.P.: Introduction to International Disaster Management. Elsevier, Burlington (2011)Google Scholar
  11. 11.
    Cruz, I.F.: Geospatial data integration. Department of Computer Science, University of Illinois, Chicago, ADVIS Lab (2004)Google Scholar
  12. 12.
    García-Castro, R., Gómez-Pérez, A., Munoz-Garcia, O.: The semantic web framework: a component-based framework for the development of semantic web applications. In: 2008 19th International Workshop on Database and Expert Systems Application, DEXA 2008, pp. 185–189. IEEE (2008)Google Scholar
  13. 13.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993). CrossRefGoogle Scholar
  14. 14.
    Hacherouf, M., Bahloul, S.N., Cruz, C.: Transforming XML documents to OWL ontologies: a survey. J. Inf. Sci. 41(2), 242–259 (2015). CrossRefGoogle Scholar
  15. 15.
    Howard, M., P.S.S.R.: Technical guidance for the INSPIRE schema transformation network service. version: 3.0, ec JRC contract notice 2009/s 107–153973 (2010)Google Scholar
  16. 16.
    Karmacharya, A.: Introduction of a spatial layer in the Semantic Web framework: a proposition through the Web platform ArchaeoKM. Ph.D. thesis, Le2i Laboratoire Electronique, Informatique et Image, University of Bourgogne (2011)Google Scholar
  17. 17.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2002, pp. 233–246. ACM, NY, USA (2002).
  18. 18.
    Müller, H., Würriehausen, F.: Semantic interoperability of German and European land-use information. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part III. LNCS, vol. 7973, pp. 309–323. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  19. 19.
    Navigli, R., Ponzetto, S.P.: Babelnet: building a very large multilingual semantic network. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 216–225. Association for Computational Linguistics (2010)Google Scholar
  20. 20.
    OGC: OGC geosparql - a geographic query language for RDF data. Technical report (2011)Google Scholar
  21. 21.
    Rase, D., Björnsson, A., Probert, M., Haupt, M.: Reference data and metadata position paper. Inspire RDM PP v4–3 en. European Commission, Joint Research Centre (2002)Google Scholar
  22. 22.
    Waters, R., Beare, M., Walker, R., Millot, M.: Schema transformation for INSPIRE. Int. J. Spat. Data Infrastruct. Res. 6, 1–22 (2011)Google Scholar
  23. 23.
    Specifications, D.T.D.: D2.3: definition of annex themes and scope v3.0., European union (2008)Google Scholar
  24. 24.
    Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: a core for a web of spatial open data. Seman. Web J. 3(4), 333–354 (2012). Google Scholar
  25. 25.
    Tschirner, S., Scherp, A., Staab, S.: Semantic access to INSPIRE. In: Terra Cognita 2011 Workshop Foundations, Technologies and Applications of the Geospatial Web, p. 75. Citeseer (2011)Google Scholar
  26. 26.
    Tsinaraki, C., Christodoulakis, S.: XS2OWL: a formal model and a system for enabling XML schema applications to interoperate with OWL-DL domain knowledge and semantic web tools. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital Libraries: Research and Development. LNCS, vol. 4877, pp. 124–136. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Würriehausen, F., Karmacharya, A., Müller, H.: Using ontologies to support land-use spatial data interoperability. In: Murgante, B., et al. (eds.) ICCSA 2014, Part II. LNCS, vol. 8580, pp. 453–468. Springer, Heidelberg (2014). Google Scholar
  28. 28.
    Zhao, T., Zhang, C., Wei, M., Peng, Z.-R.: Ontology-based geospatial data query and integration. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 370–392. Springer, Heidelberg (2008). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mainz University of Applied SciencesMainzGermany
  2. 2.Université de BourgogneDijonFrance

Personalised recommendations