Spatial Modeling and Geovisualization of Rental Prices for Real Estate Portals

  • Harald Schernthanner
  • Hartmut Asche
  • Julia Gonschorek
  • Lasse Scheele
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9788)

Abstract

From a geoinformation science perspective real estate portals apply non-spatial methods to analyse and visualise rental price data. Their approach shows considerable shortcomings. Portal operators neglect real estate agents’ mantra that exactly three things are important in real estates: location, location and location [16]. Although real estate portals record the spatial reference of their listed apartments, geocoded address data is used insufficiently for analyses and visualisation, and in many cases the data is just used to “pin” map the listings. To date geoinformation science, spatial statistics and geovisualization play a minor role for real estate portals in analysing and visualising their housing data. This contribution discusses the analytical and geovisual status quo of real estate portals and addresses the most serious deficits of the employed non-spatial methods. Alternative analysing approaches from geostatistics, machine learning and geovisualization demonstrate potentials to optimise real estate portals´ analysing and visualisation capacities.

Keywords

Rental prize Spatial modeling Geovisualisation 

References

  1. 1.
    Alexa: Top Sites in Germany (2013). http://www.alexa.com/topsites/countries/
  2. 2.
    Antipov, E.A., Pokryshevskaya, E.B.: Mass appraisal of residential apartments: an application of random forest for valuation and a CART-based approach for model diagnostics. Expert Syst. Appl. 39(2), 1772–1778 (2012)CrossRefGoogle Scholar
  3. 3.
    Bourassa, S.C., Cantoni, E., Hoesli, M.: Predicting house prices with spatial dependence: a comparison of alternative methods. J. Real Estate Res. 32(2), 139–160 (2010)Google Scholar
  4. 4.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Caplin, A., Chopra, S., Leahy, J. V., LeCun, Y., Thampy, T.: Machine learning and the spatial structure of house prices and housing returns. SSRN 1316046 (2008)Google Scholar
  6. 6.
    Chica-Olmo, J.: Prediction of housing location price by a multivariate spatial method: cokriging. J. Real Estate Res. 29(1), 95–114 (2007)Google Scholar
  7. 7.
    Gordon, R.J.: The Measurement of Durable Goods Prices, National Bureau of Economic Research Monograph, 1st edn. University of Chicago Press, Chicago (1990)CrossRefGoogle Scholar
  8. 8.
    Gu, J., Zhu, M., Jiang, L.: Housing price forecasting based on genetic algorithm and support vector machine. Expert Syst. Appl. 38(4), 3383–3386 (2011)CrossRefGoogle Scholar
  9. 9.
    Hengl, T.: A Practical Guide to Geostatistical Mapping of Environmental Variables, vol. 140, no. 4, pp. 417–427 (2009)Google Scholar
  10. 10.
  11. 11.
    Kuntz, M., Helbich, M.: Geostatistical mapping of real estate prices: an empirical comparison of kriging and cokriging. Int. J. Geog. Inf. Sci. 28(9), 1904–1921 (2014)CrossRefGoogle Scholar
  12. 12.
    Li, J., Heap, A. D.: A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience Australia, Record 2008/23 (2008)Google Scholar
  13. 13.
    Manganelli, B., Pontrandolfi, P., Azzato, A., Murgante, B.: Using geographically weighted regression for housing market segmentation. Int. J. Bus. Intell. Data Min. 9(2), 161–177 (2014)CrossRefGoogle Scholar
  14. 14.
    Nexiga: Datenkatalog Marktinformationen (2014). http://bit.ly/1ySXf4i
  15. 15.
    Park, B., Bae, J.K.: Using machine learning algorithms for housing price prediction: the case of fairfax county, virginia housing data. Expert Syst. Appl. 42(6), 2928–2934 (2015)CrossRefGoogle Scholar
  16. 16.
    Stroisch, J.: Immobilien bewerten leicht gemacht. Haufe-Lexware (2010)Google Scholar
  17. 17.
    Tobler, W.R.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46(1970), 234–240 (1970)CrossRefGoogle Scholar
  18. 18.
    Hengl, T.: Finding the right pixel size. Comput. Geosci. 32(9), 1283–1298 (2006)CrossRefGoogle Scholar
  19. 19.
    Trainor, T.: Common Geographic Boundaries: Small Area Geographies, Administrative, and Grid-based Geographies – One or Many? In: Global Forum on the Integration of Statistical and Geospatial Information, 4-5 August 2014, New York. http://bit.ly/1C3JkHJ. Accessed 3 Mar 2016
  20. 20.
    Trulia: New York Real Estate Market Overview (2016). http://www.trulia.com/real_estate/New_York-New_York/
  21. 21.
    Tsutsumi, M., Shimada, A., Murakami, D.: Land price maps of Tokyo metropolitan area. Procedia Soc. Behav. Sci. 21, 193–202 (2011)CrossRefGoogle Scholar
  22. 22.
    United States Census: Geographic Terms and Concepts-Core Based Statistical Areas and Related Statistical Areas (2010). http://www.census.gov/geo/reference/gtc/gtc_cbsa.html
  23. 23.
    Wackernagel, H.: Multivariate geostatistics: an introduction with applications. In: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, vol. 33, no. 8, p. 363A. Elsevier (1996)Google Scholar
  24. 24.
    Williams, G.J.: Rattle: a data mining GUI for R. R J. 1(2), 45–55 (2009)Google Scholar
  25. 25.
    Wong, S.K., Yiu, C.Y., Chau, K.W.: Trading volume-induced spatial autocorrelation in real estate prices. J. Real Estate Finan. Econ. 46(4), 596–608 (2013)CrossRefGoogle Scholar
  26. 26.
    Zillow: What is a rent Zestimate? (2016). http://www.zillow.com/wikipages/What-is-a-Rent-Zestimate/
  27. 27.
    Zillow: Zillow Home Value Index: methodology (2016). http://www.zillow.com/research/zhvi-methodology-6032/

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Harald Schernthanner
    • 1
  • Hartmut Asche
    • 1
  • Julia Gonschorek
    • 1
  • Lasse Scheele
    • 1
  1. 1.Department of GeographyUniversity of PotsdamPotsdamGermany

Personalised recommendations