Skip to main content

The Legendre Transformation in Modern Optimization

  • Chapter
  • First Online:
Optimization and Its Applications in Control and Data Sciences

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 115))

Abstract

The Legendre transform (LET) is a product of a general duality principle: any smooth curve is, on the one hand, a locus of pairs, which satisfy the given equation and, on the other hand, an envelope of a family of its tangent lines.

An application of the LET to a strictly convex and smooth function leads to the Legendre identity (LEID). For strictly convex and three times differentiable function the LET leads to the Legendre invariant (LEINV).

Although the LET has been known for more then 200 years both the LEID and the LEINV are critical in modern optimization theory and methods.

The purpose of the paper is to show the role of the LEID and the LEINV play in both constrained and unconstrained optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alber, M., Reemtsen, R.: Intensity modulated radiotherapy treatment planning by use of a barrier-penalty multiplier method. Optim. Methods Softw. 22 (3), 391–411 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antipin, A.S.: Methods of Nonlinear Programming Based on the Direct and Dual Augmentation of the Lagrangian. VNIISI, Moscow (1979)

    Google Scholar 

  3. Auslender, R., Cominetti, R., Haddou, M.: Asymptotic analysis for penalty and barrier methods in convex and linear programming. Math. Oper. Res. 22 (1), 43–62 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H., Matouskova, E., Reich, S.: Projection and proximal point methods, convergence results and counterexamples. Nonlinear Anal. 56 (5), 715–738 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Optimal design of engineering structures. Optima 47, 4–9 (1995)

    Google Scholar 

  6. Ben-Tal, A., Zibulevski, M.: Penalty-barrier methods for convex programming problems. SIAM J. Optim. 7, 347–366 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  8. Bregman, L.: The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bregman, L., Censor, Y., Reich, S.: Dykstra algorithm as the nonlinear extension of Bregman’s optimization method. J. Convex Anal. 6 (2), 319–333 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Breitfeld, M., Shanno, D.: Computational experience with modified log-barrier methods for nonlinear programming. Ann. Oper. Res. 62, 439–464 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Byrne, C., Censor, Y.: Proximity function minimization using multiple Bregman projections with application to split feasibility and Kullback-Leibler distance minimization. Ann. Oper. Res. 105, 77–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carroll, C.: The created response surface technique for optimizing nonlinear-restrained systems. Oper. Res. 9 (2), 169–184 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Censor, Y., Zenios, S.: The proximal minimization algorithm with d-functions. J. Optim. Theory Appl. 73, 451–464 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, C., Mangasarian, O.L.: Smoothing methods for convex inequalities and linear complementarity problems. Math. Program. 71, 51–69 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3 (4), 538–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49, 1–23 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  17. Daube-Witherspoon, M., Muehllehner, G.: An iterative space reconstruction algorithm suitable for volume ECT. IEEE Trans. Med Imaging 5, 61–66 (1986)

    Article  Google Scholar 

  18. Dikin, I.: Iterative solutions of linear and quadratic programming problems. Sov. Math. Dokl. 8, 674–675 (1967)

    MATH  Google Scholar 

  19. Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions with applications to convex programming. Math. Oper. Res. 18 (1), 202–226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eggermont, P.: Multiplicative iterative algorithm for convex programming. Linear Algebra Appl. 130, 25–32 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ekeland, I.: Legendre duality in nonconvex optimization and calculus of variations. SIAM J. Control. Optim. 16 (6), 905–934 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fiacco, A., Mc Cormick, G.: Nonlinear Programming, Sequential Unconstrained Minimization Techniques. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  23. Frisch, K.: The logarithmic potential method for convex programming. Memorandum of May 13 1955, University Institute of Economics, Oslo (1955)

    Google Scholar 

  24. Goldshtein, E., Tretiakov, N.: Modified Lagrangian Functions. Nauka, Moscow (1989)

    Google Scholar 

  25. Griva, I., Polyak, R.: Primal-dual nonlinear rescaling method with dynamic scaling parameter update. Math. Program. Ser. A 106, 237–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Griva, I., Polyak, R.: Proximal point nonlinear rescaling method for convex optimization. Numer. Algebra Control Optim. 1 (3), 283–299 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Guler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hestenes, M.R.: Multipliers and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hiriat-Urruty, J., Martinez-Legaz, J.: New formulas for the Legendre-Fenchel transform. J. Math. Anal. Appl. 288, 544–555 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ioffe, A., Tichomirov, V.: Duality of convex functions and extremum problems. Uspexi Mat. Nauk 23 (6)(144), 51–116 (1968)

    Google Scholar 

  31. Jensen, D., Polyak, R.: The convergence of a modify barrier method for convex programming. IBM J. Res. Dev. 38 (3), 307–321 (1999)

    Article  MATH  Google Scholar 

  32. Kocvara, M., Stingl, M.: PENNON. A code for convex nonlinear and semidefinite programming. Optim. Methods Softw. 18 (3), 317–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kocvara, M., Stingl, M.: Recent progress in the NLP-SDP code PENNON. In: Workshop Optimization and Applications, Oberwalfach (2005)

    Google Scholar 

  34. Kocvara, M., Stingl, M.: On the solution of large-scale SDP problems by the modified barrier method using iterative solver. Math. Program. Ser. B 109, 413–444 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Martinet, B.: Regularization d’inequations variationelles par approximations successive. Rev. Fr. Inf. Res. Ofer 4 (R3), 154–159 (1970)

    MathSciNet  MATH  Google Scholar 

  36. Martinet, B.: Determination approachee d’un point fixe d’une application pseudo-contractante. C.R. Acad. Sci. Paris 274 (2), 163–165 (1972)

    Google Scholar 

  37. Matioli, L., Gonzaga, C.: A new family of penalties for augmented Lagrangian methods. Numer. Linear Algebra Appl. 15, 925–944 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Melman, A., Polyak, R.: The Newton modified barrier method for QP problems. Ann. Oper. Res. 62, 465–519 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Moreau, J.: Proximite et dualite dans un espace Hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  40. Motzkin, T.: New techniques for linear inequalities and optimization. In: project SCOOP, Symposium on Linear Inequalities and Programming, Planning Research Division, Director of Management Analysis Service, U.S. Air Force, Washington, D.C., no. 10, (1952)

    Google Scholar 

  41. Nash, S., Polyak, R., Sofer, A.: A numerical comparison of barrier and modified barrier method for large scale bound-constrained optimization. In: Hager, W., Hearn, D., Pardalos, P. (eds.) Large Scale Optimization, State of the Art, pp. 319–338. Kluwer Academic, Dordrecht (1994)

    Chapter  Google Scholar 

  42. Nesterov, Yu., Nemirovsky, A.: Interior Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  43. Nesterov, Yu.: Introductory Lectures on Convex Optimization. Kluwer Academic, Norwell, MA (2004)

    Book  MATH  Google Scholar 

  44. Polyak, B.: Iterative methods using lagrange multipliers for solving extremal problems with constraints of the equation type. Comput. Math. Math. Phys. 10 (5), 42–52 (1970)

    Article  MathSciNet  Google Scholar 

  45. Polyak, B.: Introduction to Optimization. Optimization Software, New York (1987)

    MATH  Google Scholar 

  46. Polyak, R.: Modified barrier functions (theory and methods). Math Program. 54, 177–222 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Polyak, R.: Log-sigmoid multipliers method in constrained optimization. Ann. Oper. Res. 101, 427–460 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Polyak, R.: Nonlinear rescaling vs. smoothing technique in convex optimization. Math. Program. 92, 197–235 (2002)

    MathSciNet  Google Scholar 

  49. Polyak, R.: Lagrangian transformation and interior ellipsoid methods in convex optimization. J. Optim. Theory Appl. 163 (3), 966–992 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Polyak, R., Teboulle, M.: Nonlinear rescaling and proximal-like methods in convex optimization. Math. Program. 76, 265–284 (1997)

    MathSciNet  MATH  Google Scholar 

  51. Polyak, B., Tret’yakov, N.: The method of penalty estimates for conditional extremum problems. Comput. Math. Math. Phys. 13 (1), 42–58 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  52. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher (ed.) Optimization, pp. 283–298. Academic Press, London (1969)

    Google Scholar 

  53. Powell, M.: Some convergence properties of the modified log barrier methods for linear programming. SIAM J. Optim. 50 (4), 695–739 (1995)

    Article  MATH  Google Scholar 

  54. Ray, A., Majumder, S.: Derivation of some new distributions in statistical mechanics using maximum entropy approach. Yugosl. J. Oper. Res. 24 (1), 145–155 (2014)

    Article  MathSciNet  Google Scholar 

  55. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22–44 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Rockafellar, R.T.: A dual approach to solving nonlinear programming problems by unconstrained minimization. Math. Program. 5, 354–373 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal points algorithms in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  58. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  59. Teboulle, M.: Entropic proximal mappings with application to nonlinear programming. Math. Oper. Res. 17, 670–690 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  60. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. (Translated) 4, 1035–1038 (1963)

    Google Scholar 

  61. Tseng, P., Bertsekas, D.: On the convergence of the exponential multipliers method for convex programming. Math. Program. 60, 1–19 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  62. Vardi, Y., Shepp, L., Kaufman, L.: A statistical model for positron emission tomography. J. Am. Stat. Assoc. 80, 8–38 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman A. Polyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polyak, R.A. (2016). The Legendre Transformation in Modern Optimization. In: Goldengorin, B. (eds) Optimization and Its Applications in Control and Data Sciences. Springer Optimization and Its Applications, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-319-42056-1_15

Download citation

Publish with us

Policies and ethics