Abstract
This paper presents a fuzzy proportional membership model for clustering (FCPM). Unlike the other clustering models, FCPM requires that each entity may express an extent of each prototype, which makes its criterion to loose the conventional prototype-additive structure. The methods for fitting the model at different fuzziness parameter values are presented. Because of the complexity of the clustering criterion, minimization of the errors requires the gradient projection method (GPM). We discuss how to find the projection of a vector on the simplex of the fuzzy membership vectors and how the stepsize length of the GPM had been fixed. The properties of the clusters found with the FCPM are discussed. Especially appealing seems the property to keep the extremal cluster prototypes stable even after addition of many entities around the grand mean.
Keywords
- Fuzzy proportional membership
- Gradient projection method
- Extremal cluster prototype
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
In the follow up text the number of clusters is denoted by K instead of c as in the FCM.
References
Abonyi, J., Feil, B.: Cluster Analysis for Data Mining and System Identification. Springer, Berlin (2007)
Abu-Jamous, B., Fa, R., Nandi, A.K.: Integrative Cluster Analysis in Bioinformatics. Wiley, New York (2015)
Ada, I., Berthold, M.R.: The new iris data: modular data generators. In: KDD’10 Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 413–422 (2010)
Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kotter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: the Konstanz information miner. In: Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007). Springer, Berlin (2007)
Bertsekas, D.: On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans. Autom. Control 21 (2), 174–184 (1976)
Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont (1995)
Bezdek, J.: Fuzzy mathematics in pattern classification. Ph.D. Thesis, Applied Mathematics Center, Cornell University, Ithaca (1973)
Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
Bezdek, J.C., Pal, S.K. (eds.): Fuzzy Models for Pattern Recognition. IEEE Press, New York (1992)
Bezdek, J., Keller, J., Krishnapuram, R., Pal, T.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic, Norwell (1999)
Bowers, C., Beale, R., Hendley, R.: Identifying archetypal perspectives in news articles. In: Proceedings of the 26th Annual BCS Interaction Specialist Group Conference on People and Computers (BCS-HCI’12), pp. 327–332 (2012)
Cannon, R., Dave, J., Bezdek, J.: Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 8, 248–255 (1986)
Chan, B., Mitchell, D., Cram, L.: Archetypal analysis of galaxy spectra. Mon. Not. R. Astron. Soc. 338, 790–795 (2003)
Chiang, M.M.-T., Mirkin, B.: Intelligent choice of the number of clusters in K-means clustering: an experimental study with different cluster spreads. J. Classif. 27 (1), 3–40 (2010)
Cutler, A., Breiman, L.: Archetypal analysis. Technometrics 36 (4), 338–347 (1994)
Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters. J. Cybern 3, 32–57 (1974)
Eisenack, K., Lüdeke, M., Kropp, J.: Construction of archetypes as a formal method to analyze social-ecological systems. In: Proceedings of the Institutional Dimensions of Global Environmental Change Synthesis Conference (2006)
Elder, A., Pinnel, J.: Archetypal analysis: an alternative approach to finding defining segments. In: 2003 Sawtooth Software Conference Proceedings, pp. 113–129. Sequim, WA (2003)
Eugster, M.: Performance profiles based on archetypal athletes. Int. J. Perform. Anal. Sport 12 (1), 166–187 (2012)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining. AAAI Press/The MIT Press, Menlo Park (1996)
Fu, L., Medico, E.: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinf. 8, 3 (2007)
Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38 (3), 9 (2006)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11 (1):10–18 (2009)
Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. Wiley, New York (1999)
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)
Jimenez, L., Landgrebe, D.: Supervised classification in high-dimensional space: geometrical, statistical and asymptotical properties of multivariate data. IEEE Trans. Syst. Man Cybern. Part C 28 (1):39–54 (1998)
Kriegel, H., Kröger, P., Zimek, A.: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data 3 (1), 1–58 (2009)
Levitin, E.S., Polyak, B.T.: Constrained minimization problems. USSR Comput. Math. Math. Phys. 6 (5), 1–50 (1966) (English transl. of paper in Zh. Vychisl. Mat. i Mat. Fiz., 6 (5), 787–823, 1965)
Li, S., Wang, P., Louviere, J., Carson, R.: Archetypal analysis: a new way to segment markets based on extreme individuals. In: A Celebration of Ehrenberg and Bass: Marketing Knowledge, Discoveries and Contribution, ANZMAC 2003 Conference Proceedings, pp. 1674–1679, Adelaide (2003)
Lin, C.-J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19 (10), 2756–2779 (2007)
Mezzich, J.E., Solomon, H.: Taxonomy and Behavioral Science. Academic Press, London (1980)
Milligan, G.W.: An algorithm for generating artificial test clusters. Psychometrika 50 (1), 123–127 (1985)
Mirkin, B.: Mathematical classification and clustering. Nonconvex Optimization and Its Applications. Kluwer Academic, Dordrecht (1996)
Mirkin, B.: Clustering: A Data Recovery Approach, 2nd edn. Chapman & Hall/CRC Press, London/Boca Raton (2012)
Mirkin, B., Satarov, G: Method of fuzzy additive types for analysis of multidimensional data. Autom. Remote. Control. 51 (5,6), 1:683–688, 2:817–821 (1990)
Mørup, M., Hansen, L.: Archetypal analysis for machine learning and data mining. Neurocomputing 80, 54–63 (2012)
Narayanan, S.J., Bhatt, R.B., Paramasivam, I., Khalid, M., Tripathy, B.K.: Induction of fuzzy decision trees and its refinement using gradient projected-neuro-fuzzy decision tree. Int. J. Adv. Intell. Paradigms 6 (4), 346–369 (2014)
Nascimento, S.: Fuzzy clustering via proportional membership model. Frontiers of Artificial Intelligence and Applications, vol. 119. IOS Press, Amsterdam (2005). ISBN: 1 58603 489 8 (reprinted 2006)
Nascimento, S., Mirkin, B., Moura-Pires, F.: A fuzzy clustering model of data and fuzzy c-means. In: Langari, R. (ed.) Proceedings of The 9th IEEE International Conference on Fuzzy Systems, Fuzz-IEEE 2000. Soft Computing in the Information Age, IEEE Neural Networks Council, pp. 302–307. IEEE Press, New York (ISSN 1098-7584) (2000)
Nascimento, S., Mirkin, B., Moura-Pires, F.: Modeling proportional membership in fuzzy clustering. IEEE Trans. Fuzzy Syst. 11 (2), 173–186 (2003)
Oliveira, J.V., Pedrycz, W.: Advances in Fuzzy Clustering and Its Applications. Wiley, New York (2007)
Omari, A., Langer, R., Conrad, S.: TARtool: a temporal dataset generator for market basket analysis. In: Advanced Data Mining and Applications, pp. 400–410. Springer, Berlin (2008)
Pal, N.R., Bezdek, J.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3, 370–379 (1995)
Pei, Y., Zaiane, O.: A synthetic data generator for clustering and outlier analysis, Technical Report ID:TR06-15, 33 p. (2006)
Polyak, B.: A general method for solving extremum problems. Sov. Math. Dokl. 8 (3), 593–597 (1967)
Polyak, B.: Introduction to Optimization. Optimization Software, New York (1987)
Porzio, G., Ragozini, G., Vistocco, D.: On the use of archetypes as benchmarks. Appl. Stoch. Model. Bus. Ind. 24 (5), 419–437 (2008)
Runkler, T.A.: Data Analytics, Models and Algorithms for Intelligent Data Analysis. Springer, Berlin (2012)
Ruspini, E.: A new approach to clustering. Inf. Control. 15, 22–32 (1969)
Schmidt, M., Kim, D., Sra, S.: Projected Newton-type methods in machine learning. In: Optimization for Machine Learning, pp. 305–330. MIT Press, Cambridge (2011)
Steinbach, M., Ertoz, L., Kumar, V.: The challenges of clustering high dimensional data. In: Wille, L.T. (ed.) New Directions in Statistical Physics, pp. 273–309. Springer, Berlin (2004)
Steinley, D., Brusco, M.: Initializing K-means batch clustering: a critical evaluation of several techniques. J. Classif. 24 (1), 99–121 (2007)
Sun, J., Zhao, W., Xue, J., Shen, Z. Shen, Y.: Clustering with feature order preferences. Intell. Data Anal. 14, 479–495 (2010)
Vendramin, L., Naldi, M.C., Campello, R.J.G.B.: Fuzzy clustering algorithms and validity indices for distributed data. In: Emre Celebi, M. (ed.) Partitional Clustering Algorithms. Springer, Berlin (2015)
Yeh, C-Y, Huang, C.-W., Lee, S.-J.: Multi-Kernel support vector clustering for multi-class classification. In: Proceedings of The 3rd International Conference on Innovative Computing Information and Control (ICICIC’08). IEEE, New York (2008)
Acknowledgements
I wish to thank Professor Boris Mirkin for having introduce me to fuzzy clustering within the Data Recovery paradigm, and for all the years of discussion that we have been sharing ever since. The comments from the anonymous Reviewers are greatly acknowledged as they contributed to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Nascimento, S. (2016). Applying the Gradient Projection Method to a Model of Proportional Membership for Fuzzy Cluster Analysis. In: Goldengorin, B. (eds) Optimization and Its Applications in Control and Data Sciences. Springer Optimization and Its Applications, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-319-42056-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-42056-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42054-7
Online ISBN: 978-3-319-42056-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)