Coordination and Consensus of Linear Systems

  • Alberto IsidoriEmail author
Part of the Advanced Textbooks in Control and Signal Processing book series (C&SP)


In this chapter, we will see how the theory of asymptotic tracking can be fruitfully extended to address problems in which a large set of systems is controlled in such a way that certain variables of interest asymptotically coincide. The specific challenge addressed in this chapter resides in the fact that there is a limited exchange of information between individual systems, each one of which has access only to measurements of the outputs of limited number of neighbors.


Asymptotic Tracking Unique Symmetric Positive Definite Solution Dynamic Control Mode Leader-following Coordination Gene Location Reference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. Kuramoto, Self-Entrainment of a Population of Coupled Non-Linear Oscillators, ed. by H. Araki, International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, vol. 39 (Springer, Berlin, 1975), pp. 420–422Google Scholar
  2. 2.
    T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. |75, pp. 1226–1229 (1995)Google Scholar
  3. 3.
    J.K. Hale, Diffusive coupling, dissipation, and synchronization. J. Dyn. Diff. Eqns 9, 1–52 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Jadbabaie, J. Lin, A.S. Morse, Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules. IEEE Trans. Autom. Control 48, 988–1001 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Olfati-Saber, R.M. Murray, Consensus Problems in Networks of Agents With Switching Topology and Time-Delays. IEEE Trans. Autom. Control 49, 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Nair, N.E. Leonard, Stable synchronization of mechanical system networks. SIAM J. Control Optim. 47, 234–265 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. Fiedler, Algebraic connectivity of graphs. Czechoslovak Mathematical Journal 23, 298–305 (1973)MathSciNetzbMATHGoogle Scholar
  8. 8.
    R. Merris, A survey of graph Laplacians. Linear Multilinear Algebr. 39, 19–31 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    L. Moreau, Stability of continuous-time distributed consensus algorithms (2004). arXiv:math/0409010v1 [math.OC]
  10. 10.
    L. Moreau, Stability of multi-agent systems with time-dependent communication links. IEEE Trans. Autom. Control 50, 169–182 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.A. Fax, R.M. Murray, Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49, 1465–1476 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    J.C. Willems, Least square stationary optimal control and the algebraic Riccati equation. IEEE Trans. Autom. Control 16, 621–634 (1971)MathSciNetCrossRefGoogle Scholar
  13. 13.
    L. Scardovi, R. Sepulchre, Synchronization in networks of identical linear systems. Automatica 45, 2557–2562 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    P. Wieland, From Static to Dynamic Couplings in Consensus and Synchronization among Identical and Non-Identical Systems, PhD Dissertation, Universität Stuttgart, 2010Google Scholar
  15. 15.
    Z. Li, Z. Duan, G. Chen, Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint. IEEE Trans. Circuits Syst.-I 57, 213–224 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J.H. Seo, H. Shim, J. Back, Consensus of high-order linear systems using dynamic output feedback compensator: low gain approach. Automatica 45, 2659–2664 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Z. Lin, Low Gain Feedback (Springer, London, 1999)Google Scholar
  18. 18.
    P. Wieland, R. Sepulchre, F. Allgöwer, An internal model principle is necessary and sufficient for linear output synchronization. Automatica 47, 1068–1074 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    H. Kim, H. Shim, J.H. Seo, Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Trans. Autom. Control 56, 200–206 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    D.R. Olfati-Saber, J.A. Fax, R.M. Murray, Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215–233 (2007)CrossRefGoogle Scholar
  21. 21.
    H.L. Trentelman, K. Takaba, N. Monshizadeh, Robust Synchronization of Uncertain Linear Multi-Agent Systems. IEEE Trans. Autom. Control 58, 1511–1523 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Isidori, L. Marconi, G. Casadei, Robust Output Synchronization of a Network of Heterogeneous Nonlinear Agents Via Nonlinear Regulation Theory. IEEE Trans. Autom. Control 59, 2680–2691 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    F. Delli Priscoli, A. Isidori, L. Marconi, A. Pietrabissa, Leader-Following Coordination of Nonlinear Agents Under Time-Varying Communication Topologies, IEEE Trans. Control Netw. Syst. Control, 2, 393–405 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Informatica, Automatica e GestionaleUniversità degli Studi di Roma “La Sapienza”RomeItaly

Personalised recommendations