Skip to main content

Microenvironmental Niches and Sanctuaries: A Route to Acquired Resistance

  • Chapter
  • First Online:
Systems Biology of Tumor Microenvironment

Abstract

A tumor vasculature that is functionally abnormal results in irregular gradients of metabolites and drugs within the tumor tissue. Recently, significant efforts have been committed to experimentally examine how cellular response to anti-cancer treatments varies based on the environment in which the cells are grown. In vitro studies point to specific conditions in which tumor cells can remain dormant and survive the treatment. In vivo results suggest that cells can escape the effects of drug therapy in tissue regions that are poorly penetrated by the drugs. Better understanding how the tumor microenvironments influence the emergence of drug resistance in both primary and metastatic tumors may improve drug development and the design of more effective therapeutic protocols. This chapter presents a hybrid agent-based model of the growth of tumor micrometastases and explores how microenvironmental factors can contribute to the development of acquired resistance in response to a DNA damaging drug. The specific microenvironments of interest in this work are tumor hypoxic niches and tumor normoxic sanctuaries with poor drug penetration. We aim to quantify how spatial constraints of limited drug transport and quiescent cell survival contribute to the development of drug resistant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baguley BC (2010) Multiple drug resistance mechanisms in cancer. Mol Biotechnol 46(3):308–316. doi:10.1007/s12033-010-9321-2

    Article  CAS  PubMed  Google Scholar 

  2. Baquero F, Coque TM, de la Cruz F (2011) Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother 55(8):3649–3660. doi:10.1128/AAC.00013-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barcellos-Hoff MH, Lyden D, Wang TC (2013) The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 13(7):511–518. doi:10.1038/nrc3536

    Article  CAS  PubMed  Google Scholar 

  4. Bigger JW (1946) Synergic action of penicillin and sulphathiazole on Bacterium typhosum. Lancet 1(6386):81–83

    Article  CAS  PubMed  Google Scholar 

  5. Borovski T, De Sousa EMF, Vermeulen L, Medema JP (2011) Cancer stem cell niche: the place to be. Cancer Res 71(3):634–639. doi:10.1158/0008-5472.CAN-10-3220

    Article  CAS  PubMed  Google Scholar 

  6. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9(4):297–308. doi:10.1038/nrm2351

    Article  CAS  PubMed  Google Scholar 

  7. Brocato T, Dogra P, Koay EJ, Day A, Chuang YL, Wang Z, Cristini V (2014) Understanding drug resistance in breast cancer with mathematical oncology. Curr Breast Cancer Rep 6(2):110–120. doi:10.1007/s12609-014-0143-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394(6692):485–490. doi:10.1038/28867

    Article  CAS  PubMed  Google Scholar 

  9. Chang DJ, Cimprich KA (2009) DNA damage tolerance: when it’s OK to make mistakes. Nat Chem Biol 5(2):82–90. doi:10.1038/nchembio.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheung-Ong K, Giaever G, Nislow C (2013) DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol 20(5):648–659. doi:10.1016/j.chembiol.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  11. Cory TJ, Schacker TW, Stevenson M, Fletcher CV (2013) Overcoming pharmacologic sanctuaries. Curr Opin HIV AIDS 8(3):190–195. doi:10.1097/COH.0b013e32835fc68a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. David E, Blanchard F, Heymann MF, De Pinieux G, Gouin F, Redini F, Heymann D (2011) The bone niche of chondrosarcoma: a sanctuary for drug resistance, tumour growth and also a source of new therapeutic targets. Sarcoma 2011:932451. doi:10.1155/2011/932451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Foo J, Michor F (2014) Evolution of acquired resistance to anti-cancer therapy. J Theor Biol 355:10–20. doi:10.1016/j.jtbi.2014.02.025

    Article  PubMed  Google Scholar 

  14. Friedberg EC (2005) Suffering in silence: the tolerance of DNA damage. Nat Rev Mol Cell Biol 6(12):943–953. doi:10.1038/nrm1781

    Article  CAS  PubMed  Google Scholar 

  15. Fu F, Nowak MA, Bonhoeffer S (2015) Spatial heterogeneity in drug concentrations can facilitate the emergence of resistance to cancer therapy. PLoS Comput Biol 11(3):e1004142. doi:10.1371/journal.pcbi.1004142

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gevertz JL, Aminzare Z, Norton KA, Perez-Velazquez J, Volkening A, Rejniak KA (2015) Emergence of anti-cancer drug resistance exploring the importance of the microenvironmental niche via a spatial model. In: Radunskaya A, Jackson T (eds) Applications of dynamial systems in biology and medicine, vol 158. Springer, Berlin, pp 1–34

    Chapter  Google Scholar 

  17. Ghajar CM (2015) Metastasis prevention by targeting the dormant niche. Nat Rev Cancer 15(4):238–247. doi:10.1038/nrc3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY, Chen EI, Lyden D, Bissell MJ (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807–817. doi:10.1038/ncb2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghosal G, Chen J (2013) DNA damage tolerance: a double-edged sword guarding the genome. Transl Cancer Res 2(3):107–129. doi:10.3978/j.issn.2218-676X.2013.04.01

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14(6):430–439. doi:10.1038/nrc3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11(4):335–347. doi:10.1016/j.ccr.2007.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Greene J, Lavi O, Gottesman MM, Levy D (2014) The impact of cell density and mutations in a model of multidrug resistance in solid tumors. Bull Math Biol 76(3):627–653. doi: 10.1007/s11538-014-9936-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, Mulvey HE, Maruvka YE, Ji F, Bhang HE, Krishnamurthy Radhakrishna V, Siravegna G, Hu H, Raoof S, Lockerman E, Kalsy A, Lee D, Keating CL, Ruddy DA, Damon LJ, Crystal AS, Costa C, Piotrowska Z, Bardelli A, Iafrate AJ, Sadreyev RI, Stegmeier F, Getz G, Sequist LV, Faber AC, Engelman JA (2016) Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med 22(3):262–269. doi:10.1038/nm.4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hemsley CM, Luo JX, Andreae CA, Butler CS, Soyer OS, Titball RW (2014) Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration. Antimicrob Agents Chemother 58(10):5775–5783. doi:10.1128/AAC.02793-14

    Article  PubMed  PubMed Central  Google Scholar 

  25. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726. doi:10.1038/nrc3599

    Article  CAS  PubMed  Google Scholar 

  26. Jackson TL, Byrne HM (2000) A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math Biosci 164(1):17–38

    Article  CAS  PubMed  Google Scholar 

  27. Kaplan RN, Psaila B, Lyden D (2007) Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med 13(2):72–81. doi:10.1016/j.molmed.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  28. Karran P (2001) Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis 22(12):1931–1937

    Article  CAS  PubMed  Google Scholar 

  29. Komarova NL, Wodarz D (2005) Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci U S A 102(27):9714–9719. doi:10.1073/pnas.0501870102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Komarova NL, Wodarz D (2007) Stochastic modeling of cellular colonies with quiescence: an application to drug resistance in cancer. Theor Popul Biol 72(4):523–538. doi:10.1016/j.tpb.2007.08.003

    Article  PubMed  Google Scholar 

  31. Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48(4):919–922

    Article  CAS  PubMed  Google Scholar 

  32. Korolev KS, Xavier JB, Gore J (2014) Turning ecology and evolution against cancer. Nat Rev Cancer 14(5):371–380. doi:10.1038/nrc3712

    Article  CAS  PubMed  Google Scholar 

  33. Lambert G, Estevez-Salmeron L, Oh S, Liao D, Emerson BM, Tlsty TD, Austin RH (2011) An analogy between the evolution of drug resistance in bacterial communities and malignant tissues. Nat Rev Cancer 11(5):375–382. doi:10.1038/nrc3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lavi O, Gottesman MM, Levy D (2012) The dynamics of drug resistance: a mathematical perspective. Drug Resist Updat 15(1–2):90–97. doi:10.1016/j.drup.2012.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lavi O, Greene JM, Levy D, Gottesman MM (2013) The role of cell density and intratumoral heterogeneity in multidrug resistance. Cancer Res 73(24):7168–7175. doi:10.1158/0008-5472.CAN-13-1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5(1):48–56. doi:10.1038/nrmicro1557

    Article  CAS  PubMed  Google Scholar 

  37. Lorz A, Lorenzi T, Clairambault J, Escargueil A, Perthame B (2015) Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull Math Biol 77(1):1–22. doi:10.1007/s11538-014-0046-4

    Article  CAS  PubMed  Google Scholar 

  38. Lu H, Clauser KR, Tam WL, Frose J, Ye X, Eaton EN, Reinhardt F, Donnenberg VS, Bhargava R, Carr SA, Weinberg RA (2014) A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 16(11):1105–1117. doi:10.1038/ncb3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J CellBiol 196(4):395–406. doi:10.1083/jcb.201102147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luoto KR, Kumareswaran R, Bristow RG (2013) Tumor hypoxia as a driving force in genetic instability. Genome Integr 4(1):5. doi:10.1186/2041-9414-4-5

    Article  PubMed  PubMed Central  Google Scholar 

  41. Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14(9):2519–2526. doi:10.1158/1078-0432.CCR-07-2223

    Article  CAS  PubMed  Google Scholar 

  42. Menchon SA (2015) The effect of intrinsic and acquired resistances on chemotherapy effectiveness. Acta Biotheor 63(2):113–127. doi:10.1007/s10441-015-9248-x

    Article  PubMed  Google Scholar 

  43. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592. doi:10.1038/nrc1893

    Article  CAS  PubMed  Google Scholar 

  44. Mumenthaler SM, Foo J, Choi NC, Heise N, Leder K, Agus DB, Pao W, Michor F, Mallick P (2015) The impact of microenvironmental heterogeneity on the evolution of drug resistance in cancer cells. Cancer Informat 14(Suppl 4):19–31. doi:10.4137/CIN.S19338

    Google Scholar 

  45. Ni L, Yang S, Zhang R, Jin Z, Chen H, Conrad JC, Jin F (2016) Bacteria differently deploy type-IV pili on surfaces to adapt to nutrient availability. Biofilms Microbiomes 2:15029

    Article  Google Scholar 

  46. Nierman WC, Yu Y, Losada L (2015) The in vitro antibiotic tolerant persister population in Burkholderia pseudomallei is altered by environmental factors. Front Microbiol 6:1338. doi:10.3389/fmicb.2015.01338

    Article  PubMed  PubMed Central  Google Scholar 

  47. Oxnard GR (2016) The cellular origins of drug resistance in cancer. Nat Med 22(3):232–234. doi:10.1038/nm.4058

    Article  CAS  PubMed  Google Scholar 

  48. Palmieri D, Chambers AF, Felding-Habermann B, Huang S, Steeg PS (2007) The biology of metastasis to a sanctuary site. Clin Cancer Res 13(6):1656–1662. doi:10.1158/1078-0432.CCR-06-2659

    Article  CAS  PubMed  Google Scholar 

  49. Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21(2):139–146. doi:10.1016/j.semcancer.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  50. Pisco AO, Huang S (2015) Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘what does not kill me strengthens me’. Br J Cancer 112(11):1725–1732. doi:10.1038/bjc.2015.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238. doi:10.1016/j.stem.2015.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Powathil GG, Adamson DJ, Chaplain MA (2013) Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model. PLoS Comput Biol 9(7), e1003120. doi:10.1371/journal.pcbi.1003120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Powathil GG, Gordon KE, Hill LA, Chaplain MA (2012) Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a hybrid multiscale cellular automaton model. J Theor Biol 308:1–19. doi:10.1016/j.jtbi.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  54. Powathil GG, Swat M, Chaplain MA (2015) Systems oncology: towards patient-specific treatment regimes informed by multiscale mathematical modelling. Semin Cancer Biol 30:13–20. doi:10.1016/j.semcancer.2014.02.003

    Article  PubMed  Google Scholar 

  55. Primeau AJ, Rendon A, Hedley D, Lilge L, Tannock IF (2005) The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res 11(24 Pt 1):8782–8788. doi:10.1158/1078-0432.CCR-05-1664

    Article  CAS  PubMed  Google Scholar 

  56. Puhalla S, Elmquist W, Freyer D, Kleinberg L, Adkins C, Lockman P, McGregor J, Muldoon L, Nesbit G, Peereboom D, Smith Q, Walker S, Neuwelt E (2015) Unsanctifying the sanctuary: challenges and opportunities with brain metastases. Neuro Oncol 17(5):639–651. doi:10.1093/neuonc/nov023

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ramirez M, Rajaram S, Steininger RJ, Osipchuk D, Roth MA, Morinishi LS, Evans L, Ji W, Hsu CH, Thurley K, Wei S, Zhou A, Koduru PR, Posner BA, Wu LF, Altschuler SJ (2016) Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun 7:10690. doi:10.1038/ncomms10690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rejniak KA, Lloyd MC, Reed DR, Bui MM (2015) Diagnostic assessment of osteosarcoma chemoresistance based on Virtual Clinical Trials. Med Hypotheses 85(3):348–354. doi:10.1016/j.mehy.2015.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shah AB, Rejniak KA, Gevertz JL (Under review) Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. https://arxiv.org/abs/160103412

  60. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA, Wong KK, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141(1):69–80. doi:10.1016/j.cell.2010.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Silva AS, Gatenby RA (2010) A theoretical quantitative model for evolution of cancer chemotherapy resistance. Biol Direct 5:25. doi:10.1186/1745-6150-5-25

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sun JD, Liu Q, Wang J, Ahluwalia D, Ferraro D, Wang Y, Duan JX, Ammons WS, Curd JG, Matteucci MD, Hart CP (2012) Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin Cancer Res 18(3):758–770. doi:10.1158/1078-0432.CCR-11-1980

    Article  CAS  PubMed  Google Scholar 

  63. Thurber GM, Yang KS, Reiner T, Kohler RH, Sorger P, Mitchison T, Weissleder R (2013) Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat Commun 4:1504. doi:10.1038/ncomms2506

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vinegoni C, Dubach JM, Thurber GM, Miller MA, Mazitschek R, Weissleder R (2015) Advances in measuring single-cell pharmacology in vivo. Drug Discov Today 20(9):1087–1092. doi:10.1016/j.drudis.2015.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Waters LS, Minesinger BK, Wiltrout ME, D’Souza S, Woodruff RV, Walker GC (2009) Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol R 73(1):134 − +. doi:10.1128/MMBR.00034-08

    Google Scholar 

  66. Zhang Q, Lambert G, Liao D, Kim H, Robin K, Tung CK, Pourmand N, Austin RH (2011) Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333(6050):1764–1767. doi:10.1126/science.1208747

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Y (2014) Persisters, persistent infections and the Yin-Yang model. Emerg Microbes Infect 3(1), e3. doi:10.1038/emi.2014.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was initiated during the Woman in Applied Mathematics (WhAM!) Research Collaboration Workshop at the Institute of Mathematics and Its Applications (IMA). KAR was supported in part by the U01 CA202229-01 grant from the National Institute of Health. The Bavarian State Ministry of Education and Culture, Science and Arts joint with the Technical University of Munich provided funding for JPV through the Laura Bassi Award. JPV also wants to thanks the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for providing a travel grant (CE 243/1-1) to facilitate the initiation of this cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Pérez-Velázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pérez-Velázquez, J., Gevertz, J.L., Karolak, A., Rejniak, K.A. (2016). Microenvironmental Niches and Sanctuaries: A Route to Acquired Resistance. In: Rejniak, K. (eds) Systems Biology of Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-319-42023-3_8

Download citation

Publish with us

Policies and ethics