Abstract
This work proposes a declarative semantics based on a fuzzy variant of the classical notion of least Herbrand model for the so-called FASILL language (acronym of “Fuzzy Aggregators and Similarity Into a Logic Language”) which has been recently designed and implemented in our research group for coping with implicit/explicit truth degree annotations, a great variety of connectives and unification by similarity.
Keywords
- Fuzzy logic programming
- Similarity
- Herbrand model
Work supported by the EU (FEDER), and the Spanish MINECO Ministry (Ministerio de Economía y Competitividad) under grant TIN2013-45732-C4-2-P.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
Two different programming environments for \(\mathsf{Bousi}{\sim }\mathsf{Prolog}\) are available at http://dectau.uclm.es/bousi/.
- 2.
The tool is freely accessible from the Web site http://dectau.uclm.es/floper/.
- 3.
This convention is quite standard and even used in a pure logic language like Prolog, where the reserved words true and fail -which directly resemble the pair of elements conforming the fixed lattice of truth degrees associated to any Prolog program- can be freely used on goals and clause bodies.
- 4.
Here, the connectives \(\varsigma \) are binary operations but we usually generalize them with an arbitrary number of arguments, that is, with truth function \(\mathbf {\dot{\varsigma }} : L^n\rightarrow L\).
- 5.
Note that, in the antecedent of this implication we use the order for pairs, (which is defined as \((x_1,y_1)\le (x_2,y_2)\) if, and only if, \(x_1\le x_2 \text{ and } y_1\le y_2\)), while in the consequent the usual order on the interval [0, 1] is considered. Similarly, it is possible to extend the usual order on [0, 1], for n-ary connectives.
- 6.
For convenience, \({\mathcal R}(x,y)\), also denoted \(x{\mathcal R}y\), refers to both the syntactic expression (that symbolizes that the elements \(x,y\in {\mathcal U}\) are related by \({\mathcal R}\)) and the membership degree \(\mu _{\mathcal R}(x,y)\), i.e., the affinity degree of the pair \((x,y)\in {\mathcal U}\times {\mathcal U}\) with the verbal predicate (or fuzzy predicate) \({\mathcal R}\).
- 7.
Note that elegant(taxi) and vanguardist(metro) are 1-ary predicates, whereas that taxi, metro are terms with arity 0, i.e. constants.
- 8.
Note that, X-MALP programs do not rely on adjoint pairs.
- 9.
Sometimes we will abbreviate writing “fuzzy model” or simply “model”.
- 10.
Sometimes we will abbreviate writing “least fuzzy model” or simply “least model”.
- 11.
The last version of the FLOPER system which copes with similarity relations can be freely downloaded from http://dectau.uclm.es/floper/?q=sim and it can be tested on-line through http://dectau.uclm.es/floper/?q=sim/test.
References
Arcelli, F.: Likelog for flexible query answering. Soft Comput. 7(2), 107–114 (2002)
Arcelli, F., Formato, F.: Likelog: a logic programming language for flexible data retrieval. In: Proceedings of the ACM Symposium on Applied Computing, SAC 1999, San Antonio, Texas, pp. 260–267. ACM, Artificial Intelligence and Computational Logic (1999)
Caballero, R., Rodríguez-Artalejo, M., Romero-Díaz, C.A.: Similarity-based reasoning in qualified logic programming. In: Proceedings of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP 2008, pp. 185–194. ACM, New York (2008)
Caballero, R., Rodríguez-Artalejo, M., Romero-Díaz, C.A.: A transformation-based implementation for CLP with qualification and proximity. Theory Pract. Logic Program. 14(1), 1–63 (2014)
Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)
Formato, F., Gerla, G., Sessa, M.I.: Similarity-based unification. Fundamenta Informaticae 41(4), 393–414 (2000)
Julián Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A fuzzy logic programming environment for managing similarity and truth degrees. In: Escobar, S. (ed.) Proceedings of XIV Jornadas sobre Programación y Lenguajes, PROLE 2014, Cádiz, Spain. EPTCS, vol. 173, pp. 71–86 (2015). http://dx.doi.org/10.4204/EPTCS.173.6
Julián, P., Moreno, G., Penabad, J.: On fuzzy unfolding. A multi-adjoint approach. Fuzzy Sets Syst. 154, 16–33 (2005)
Julián, P., Moreno, G., Penabad, J.: On the declarative semantics of multi-adjoint logic programs. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 253–260. Springer, Heidelberg (2009)
Julián-Iranzo, P., Moreno, G., Vázquez, C.: Similarity-based strict equality in a fully integrated fuzzy logic language. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 193–207. Springer, Heidelberg (2015)
Julián-Iranzo, P., Rubio-Manzano, C.: A declarative semantics for Bousi\(\sim \)Prolog. In: Proceedings of 11th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP 2009, Coimbra, Portugal, pp. 149–160. ACM (2009)
Julián-Iranzo, P., Rubio-Manzano, C.: An efficient fuzzy unification method and its implementation into the Bousi\(\sim \)Prolog system. In: Proceedings of the 2010 IEEE International Conference on Fuzzy Systems, Barcelona, Spain, pp. 1–8 (2010). http://dx.doi.org/10.1109/FUZZY.2010.5584193
Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. J. Logic Program. 12, 335–367 (1992)
Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1987)
Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)
Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: A practical management of fuzzy truth-degrees using FLOPER. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 20–34. Springer, Heidelberg (2010)
Moreno, G., Penabad, J., Vázquez, C.: Beyond multi-adjoint logic programming. Int. J. Comput. Math. 92(9), 1956–1975 (2014)
Moreno, G., Vázquez, C.: Fuzzy logic programming in action with FLOPER. J. Softw. Eng. Appl. 7, 237–298 (2014)
Muñoz-Hernández, S., Ceruelo, V.P., Strass, H.: RFuzzy: Syntax, semantics and implementation details of a simple and expressive fuzzy tool over Prolog. Inform. Sci. 181(10), 1951–1970 (2011)
Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall, Boca Ratón (2006)
Rodríguez-Artalejo, M., Romero-Díaz, C.A.: Quantitative logic programming revisited. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 272–288. Springer, Heidelberg (2008)
Rubio-Manzano, C., Julián-Iranzo, P.: A fuzzy linguistic prolog and its applications. J. Intell. Fuzzy Syst. 26(3), 1503–1516 (2014)
Sessa, M.I.: Translations and similarity-based logic programming. Soft Comput. 5(2), 160–170 (2001). http://dx.doi.org/10.1007/PL00009891
Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Theoret. Comput. Sci. 275(1–2), 389–426 (2002)
van Emden, M.H.: Quantitative deduction and its fixpoint theory. J. Logic Program. 3(1), 37–53 (1986)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C. (2016). A Declarative Semantics for a Fuzzy Logic Language Managing Similarities and Truth Degrees. In: Alferes, J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds) Rule Technologies. Research, Tools, and Applications. RuleML 2016. Lecture Notes in Computer Science(), vol 9718. Springer, Cham. https://doi.org/10.1007/978-3-319-42019-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-42019-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42018-9
Online ISBN: 978-3-319-42019-6
eBook Packages: Computer ScienceComputer Science (R0)