Handling Complex Process Models Conditions Using First-Order Horn Clauses

  • Stefano Ferilli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9718)


WorkFlow Management Systems provide automatic support to learn process models or to check compliance of process enactment to correct models. The expressive power of the adopted formalism for representing process models is fundamental to determine the effectiveness or even feasibility of a correct model. In particular, a desirable feature is the possibility of expressing complex conditions on some elements of the model. The formalism used in the WoMan framework for workflow management, based on First-Order Logic, is more expressive than standard formalisms adopted in the literature. It allows tight integration between the activity flow and the conditions, and it allows one to express conditions that take into account contextual information and various kinds of relationships among the involved entities. This paper discusses such a formalism, especially concerning conditions, and provides an explicative example of how this can be applied in practice.


Business process modeling Process mining Logic programming 


  1. 1.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 467–483. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    De Carolis, B., Ferilli, S., Redavid, D.: Incremental learning of daily routines as workflows in a smart home environment. ACM Trans. Interact. Intell. Syst. 4, 1–23 (2015)CrossRefGoogle Scholar
  3. 3.
    Cattafi, M., Lamma, E., Riguzzi, F., Storari, S.: Incremental declarative process mining. In: Szczerbicki, E., Nguyen, N.T. (eds.) Smart Information and Knowledge Management. SCI, vol. 260, pp. 103–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data. Technical Report CU-CS-819-96, Department of Computer Science, University of Colorado (1996)Google Scholar
  5. 5.
    Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. Technical Report CU-CS-860-98, Department of Computer Science, University of Colorado (1998)Google Scholar
  6. 6.
    de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process mining: an experimental evaluation. Data Min. Knowl. Discov. 14, 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy theory revision: induction and abduction in InTheLEx. Mach. Learn. J. 38(1/2), 133–156 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ferilli, S.: WoMan: logic-based workflow learning and management. IEEE Trans. Syst. Man Cybern. Syst. 44, 744–756 (2014)CrossRefGoogle Scholar
  9. 9.
    Ferilli, S., Esposito, F.: A heuristic approach to handling sequential information in incremental ILP. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249, pp. 109–120. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Ferilli, S., Esposito, F.: A logic framework for incremental learning of process models. Fundamenta Informaticae 128, 413–443 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Herbst, J.: Dealing with concurrency in workflow induction. In: Proceedings of the European Concurrent Engineering Conference, pp. 175–182. SCS Europe (2000)Google Scholar
  12. 12.
    Herbst, J., Karagiannis, D.: Integrating machine learning and workflow management to support acquisition and adaptation of workflow models. In: Proceedings of the 9th International Workshop on Database and Expert Systems Applications, pp. 745–752. IEEE (1998)Google Scholar
  13. 13.
    Herbst, J., Karagiannis, D.: An inductive approach to the acquisition and adaptation of workflow models. In: Proceedings of the IJCAI 1999 Workshop on Intelligent Workflow and Process Management: The New Frontier for AI in Business, pp. 52–57 (1999)Google Scholar
  14. 14.
    Herbst, J.: A machine learning approach to workflow management. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)CrossRefzbMATHGoogle Scholar
  18. 18.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Rozinat, A., van der Aalst, W.M.P.: Decision mining in business processes. In: WP 164, BETA Working Paper Series. Eindhoven University of Technology (2006)Google Scholar
  21. 21.
    van der Aalst, W.M.P.: The application of petri nets to workflow management. J. Circ. Syst. Comput. 8, 21–66 (1998)CrossRefGoogle Scholar
  22. 22.
    van der Aalst, W.M.P.: Process mining overview and opportunities. ACM Trans. Manage. Inf. Syst. 3, 7.1–7.17 (2012)Google Scholar
  23. 23.
    van der Aalst, W.M.P., Dustdar, S.: Process mining put into context. IEEE Internet Comput. 16, 82–86 (2012)CrossRefGoogle Scholar
  24. 24.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16, 1128–1142 (2004)CrossRefGoogle Scholar
  25. 25.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from event-based data. In: Proceedings of 11th Dutch-Belgian Conference of Machine Learning (Benelearn 2001), pp. 93–100 (2001)Google Scholar
  26. 26.
    Wen, L., Wang, J., Sun, J.: Detecting implicit dependencies between tasks from event logs. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 591–603. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of BariBariItaly

Personalised recommendations