Advertisement

Rule-Based Real-Time ADL Recognition in a Smart Home Environment

  • George Baryannis
  • Przemyslaw Woznowski
  • Grigoris Antoniou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9718)

Abstract

This paper presents a rule-based approach for both offline and real-time recognition of Activities of Daily Living (ADL), leveraging events produced by a non-intrusive multi-modal sensor infrastructure deployed in a residential environment. Novel aspects of the approach include: the ability to recognise arbitrary scenarios of complex activities using bottom-up multi-level reasoning, starting from sensor events at the lowest level; an effective heuristics-based method for distinguishing between actual and ghost images in video data; and a highly accurate indoor localisation approach that fuses different sources of location information. The proposed approach is implemented as a rule-based system using Jess and is evaluated using data collected in a smart home environment. Experimental results show high levels of accuracy and performance, proving the effectiveness of the approach in real world setups.

Keywords

Event driven architectures Activity recognition ADL Indoor localisation Smart home Multi-modal sensing 

Notes

Acknowledgments

This work was performed under the SPHERE IRC, funded by the UK Engineering and Physical Sciences Research Council (EPSRC), Grant EP/K031910/1.

References

  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefMATHGoogle Scholar
  2. 2.
    Artikis, A., Sergot, M.J., Paliouras, G.: A logic programming approach to activity recognition. In: Scherp, A., Jain, R., Kankanhalli, M.S., Mezaris, V. (eds.) Proceedings of the 2nd ACM International Workshop on Events in Multimedia, EiMM 2010, pp. 3–8. ACM, New York (2010)Google Scholar
  3. 3.
    Chen, L., Khalil, I.: Activity recognition: approaches, practices and trends. In: Chen, L., Nugent, C.D., Biswas, J., Hoey, J. (eds.) Activity Recognition in Pervasive Intelligent Environments. Atlantis Ambient and Pervasive Intelligence, vol. 4, pp. 1–31. Atlantis Press, Paris (2011)CrossRefGoogle Scholar
  4. 4.
    Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recognition in smart homes. IEEE Trans. Knowl. Data Eng. 24(6), 961–974 (2012)CrossRefGoogle Scholar
  5. 5.
    Filippaki, C., Antoniou, G., Tsamardinos, I.: Using constraint optimization for conflict resolution and detail control in activity recognition. In: Keyson, D.V., Maher, M.L., Streitz, N., Cheok, A., Augusto, J.C., Wichert, R., Englebienne, G., Aghajan, H., Kröse, B.J.A. (eds.) AmI 2011. LNCS, vol. 7040, pp. 51–60. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Helaoui, R., Riboni, D., Stuckenschmidt, H.: A probabilistic ontological framework for the recognition of multilevel human activities. In: Mattern, F., Santini, S., Canny, J.F., Langheinrich, M., Rekimoto, J. (eds.) UbiComp 2013, pp. 345–354. ACM (2013)Google Scholar
  7. 7.
    Hill, E.F.: Jess in Action: Java Rule-Based Systems. Manning Publications Co., Greenwich (2003)Google Scholar
  8. 8.
    Kyriazakos, S., Mihaylov, M., Anggorojati, B., Mihovska, A., Craciunescu, R., Fratu, O., Prasad, R.: eWALL: an intelligent caring home environment offering personalized context-aware applications based on advanced sensing. Wirel. Pers. Commun. 87(3), 1093–1111 (2016)CrossRefGoogle Scholar
  9. 9.
    Liu, J., Zhang, G., Liu, Y., Tian, L., Chen, Y.Q.: An ultra-fast human detection method for color-depth camera. J. Vis. Commun. Image Represent. 31, 177–185 (2015)CrossRefGoogle Scholar
  10. 10.
    Maekawa, T., Yanagisawa, Y., Kishino, Y., Ishiguro, K., Kamei, K., Sakurai, Y., Okadome, T.: Object-based activity recognition with heterogeneous sensors on wrist. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 246–264. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Meditskos, G., Dasiopoulou, S., Kompatsiaris, I.: MetaQ: a knowledge-driven framework for context-aware activity recognition combining SPARQL and OWL 2 activity patterns. Pervasive Mob. Comput. 25, 104–124 (2016)CrossRefGoogle Scholar
  12. 12.
    Riboni, D., Bettini, C.: COSAR: hybrid reasoning for context-aware activity recognition. Pers. Ubiquit. Comput. 15(3), 271–289 (2011)CrossRefGoogle Scholar
  13. 13.
    Skarlatidis, A., Paliouras, G., Artikis, A., Vouros, G.A.: Probabilistic event calculus for event recognition. ACM Trans. Comput. Log. 16(2), 11:1–11:37 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Woznowski, P., Fafoutis, X., Song, T., Hannuna, S., Camplani, M., Tao, L., Paiement, A., Mellios, E., Haghighi, M., Zhu, N., et al.: A multi-modal sensor infrastructure for healthcare in a residential environment. In: 2015 IEEE International Conference on Communication Workshop, pp. 271–277. IEEE (2015)Google Scholar
  15. 15.
    Woznowski, P., King, R., Harwin, W., Craddock, I.: A human activity recognition framework for healthcare applications: ontology, labelling strategies, and best practice. In: Proceedings of the International Conference on Internet of Things and Big Data (IoTBD), pp. 369–377. INSTICC (2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • George Baryannis
    • 1
  • Przemyslaw Woznowski
    • 2
  • Grigoris Antoniou
    • 1
  1. 1.Department of InformaticsUniversity of HuddersfieldHuddersfieldUK
  2. 2.Faculty of EngineeringUniversity of BristolBristolUK

Personalised recommendations