PRIMER – A Regression-Rule Learning System for Intervention Optimization

  • Greg Harris
  • Anand Panangadan
  • Viktor K. Prasanna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9718)


We introduce intervention optimization as a new area of exploration for data mining research. Interventions are events designed to impact a corresponding time series. The task is to maximize the impact of such events by training a model on historical data. We propose PRIMER as a new regression-rule learning system for identifying sets of event features that maximize impact. PRIMER is for use when domain experts with knowledge of the intervention can specify a transfer function, or the form of the expected response in the time series. PRIMER’s objective function includes the goodness-of-fit of the average response of covered events to the transfer function. Incorporating domain knowledge in this way makes PRIMER robust to over-fitting on noise or spurious responses. PRIMER is designed to produce interpretable results, improving on the interpretability of even competing regression-rule systems for this task. It also has fewer and more intuitive parameters than competing rule-based systems. Empirically, we show that PRIMER is competitive with state-of-the-art regression techniques in a large-scale event study modeling the impact of insider trading on intra-day stock returns.


Regression rules Intervention analysis Rule induction Event response Time series Intervention optimization Rule learning 



This work is supported by Chevron USA, Inc. under the joint project Center for Interactive Smart Oilfield Technologies (CiSoft), at the University of Southern California.

We would also like to thank Dr. Frederik Janssen for providing support with the SeCoReg and Dynamic Reduction to Regression algorithms.


  1. 1.
    Box, G.E.P., Tiao, G.C.: Intervention analysis with applications to economic and environmental problems. J. Am. Stat. Assoc. 70(349), 70–79 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brookhouse, J., Otero, F.E.B.: Discovering regression rules with ant colony optimization. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO Companion 2015, pp. 1005–1012. ACM, New York (2015)Google Scholar
  3. 3.
    Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3(4), 261–283 (1989)Google Scholar
  4. 4.
    Coleman, T.F., Li, Y.: A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J. Optim. 6(4), 1040–1058 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dembczyński, K., Kotłowski, W., Słowiński, R.: Solving regression by learning an ensemble of decision rules. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 533–544. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)zbMATHGoogle Scholar
  7. 7.
    Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010)CrossRefGoogle Scholar
  8. 8.
    Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54 (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer Science & Business Media, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  11. 11.
    Ho, C.-H., Lin, C.-J.: Large-scale linear support vector regression. J. Mach. Learn. Res. 13(1), 3323–3348 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Holmes, G., Hall, M., Prank, E.: Generating rule sets from model trees. In: Foo, N.Y. (ed.) AI 1999. LNCS, vol. 1747, pp. 1–12. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Janssen, F., Fürnkranz, J.: A re-evaluation of the over-searching phenomenon in inductive rule learning. In: SDM, pp. 329–340. SIAM (2009)Google Scholar
  14. 14.
    Janssen, F., Fürnkranz, J.: Separate-and-conquer regression. In: Proceedings of LWA 2010: Lernen, Wissen, Adaptivität, Kassel, Germany, pp. 81–89 (2010)Google Scholar
  15. 15.
    Janssen, F., Fürnkranz, J.: Heuristic rule-based regression via dynamic reduction to classification. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p. 1330 (2011)Google Scholar
  16. 16.
    Li, E.X., Ramesh, K.: Market reaction surrounding the filing of periodic SEC reports. Acc. Rev. 84(4), 1171–1208 (2009)CrossRefGoogle Scholar
  17. 17.
    Možina, M., Demšar, J., Žabkar, J., Bratko, I.: Why is rule learning optimistic and how to correct it. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 330–340. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Quinlan, J., Cameron-Jones, R.: Oversearching and layered search in empirical learning. Breast Cancer 286, 2–7 (1995)Google Scholar
  19. 19.
    Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley, New York (1989)CrossRefzbMATHGoogle Scholar
  20. 20.
    You, H., Zhang, X.J.: Financial reporting complexity and investor underreaction to 10-K information. Rev. Acc. Stud. 14(4), 559–586 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Greg Harris
    • 1
  • Anand Panangadan
    • 2
  • Viktor K. Prasanna
    • 3
  1. 1.Department of Computer ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Computer ScienceCalifornia State UniversityFullertonUSA
  3. 3.Ming-Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations