The RuleML Knowledge-Interoperation Hub

  • Harold Boley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9718)


The RuleML knowledge-interoperation hub provides for syntactic/semantic representation and internal/external transformation of formal knowledge. The representation system permits the configuration of textbook and enriched Relax NG syntax as well as the association of syntax with semantics. The transformation tool suite includes serialized formatters (normalizers and compactifiers), polarized parsers and generators (the RuleML\(\leftrightarrow \)POSL tool and the RuleML\(\rightarrow \)PSOA/PS generator and PSOA/PS\(\rightarrow \)AST parser), as well as importers and exporters (the importer from Dexlog to Naf Datalog RuleML and the exporter from FOL RuleML languages to TPTP). An N3-PSOA-Flora knowledge-interoperation use case is introduced for illustration.


Automate Theorem Prove Stable Model Semantic Transformation Chain Knowledge Transformation Semantic Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks to my RuleML 1.02 Taskforce colleagues Tara Athan and Adrian Paschke, as well as to Gen Zou, Sadnan Al Manir, Adrian Giurca, Alexandre Riazanov, Michael Genesereth, Sudhir Agarwal, Marcel Ball, Meng Luan, Leah Bidlake, and many others, for their contributions leading to the RuleML hub. Thanks also to Paul Fodor and the entire Organizing Committee chairing RuleML 2016.


  1. 1.
    Cali, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. J. Web Semant. 14, 57–83 (2012)CrossRefGoogle Scholar
  2. 2.
    Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 3–20. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25010-6_1 CrossRefGoogle Scholar
  3. 3.
    Boley, H., Grütter, R., Zou, G., Athan, T., Etzold, S.: A Datalog\(^{\text{+ }}\) RuleML 1.01 architecture for rule-based data access in ecosystem research. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 112–126. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Hernández-Orallo, J., Muggleton, S.H., Schmid, U., Zorn, B.: Approaches and applications of inductive programming (Dagstuhl seminar 15442). Dagstuhl Rep. 5(10), 89–111 (2016)Google Scholar
  5. 5.
    Athan, T., Boley, H.: Design and implementation of highly modular schemas for XML: customization of RuleML in Relax NG. In: Palmirani, M. (ed.) RuleML 2011 - America. LNCS, vol. 7018, pp. 17–32. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Athan, T., Boley, H.: The MYNG 1.01 suite for Deliberation RuleML 1.01: Taming the language lattice. In: Patkos, T., Wyner, A., Giurca, A. (eds.) Proceedings of the RuleML 2014 Challenge, at the 8th International Web Rule Symposium. CEUR, vol. 1211, August 2014Google Scholar
  7. 7.
    Boley, H.: A RIF-style semantics for RuleML-integrated positional-slotted, object-applicative rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 194–211. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Boley, H.: PSOA RuleML: integrated object-relational data and rules. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 114–150. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Zou, G.: PSOA RuleML integration of relational and object-centered geospatial data. In: Bassiliades, N., Fodor, P., Giurca, A., Gottlob, G., Kliegr, T., Nalepa, G.J., Palmirani, M., Paschke, A., Proctor, M., Roman, D., Sadri, F., Stojanovic, N. (eds.) Proceedings of the RuleML 2015 Challenge, Berlin, Germany, 2–5 August 2015. CEUR Workshop Proceedings, vol. 1417. (2015)Google Scholar
  10. 10.
    Agarwal, S., Mohapatra, A., Genesereth, M., Boley, H.: Rule-based exploration of structured data in the browser. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 161–175. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  11. 11.
    Boley, H.: Integrating positional and slotted knowledge on the Semantic Web. J. Emerg. Technol. Web Intell. 4(2), 343–353 (2010)Google Scholar
  12. 12.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reason. 43(4), 337–362 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: A logical framework for the World Wide Web. Theory Pract. Logic Program. (TPLP) 8(3), 249–269 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kifer, M., Yang, G., Wan, H., Zhao, C.: \({\cal E}\)RGO\(^\mathit{Lite}\) (a.k.a. \({\cal F}\)lora-2): User’s Manual, v1.1 (2015).

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Computer ScienceUniversity of New BrunswickFrederictonCanada

Personalised recommendations