A Framework Enhancing the User Search Activity Through Data Posting

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9718)


Due to the increasing availability of huge amounts of data, traditional data management techniques result inadequate in many real life scenarios. Furthermore, heterogeneity and high speed of this data require suitable data storage and management tools to be designed from scratch. In this paper, we describe a framework tailored for analyzing user interactions with intelligent systems while seeking for some domain specific information (e.g., choosing a good restaurant in a visited area). The framework enhances user quest for information by performing a data exchange activity (called data posting) which enriches the information sources with additional background information and knowledge derived from experiences and behavioral properties of domain experts and users.


Big data Rule based data transformation Rule driven data presentation 


  1. 1.
    Agrawal, D., et al.: Challenges and Opportunities with Big Data: A community white paper developed by leading researchers across the United States (2012)Google Scholar
  2. 2.
    Arenas, M., Barceló, P., Fagin, R., Libkin, L.: Locally consistent transformations and query answering in data exchange. In: PODS, pp. 229–240 (2004)Google Scholar
  3. 3.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press Books, Addison Wesley, New York (1999)Google Scholar
  4. 4.
    Chandra, A., Harel, D.: Structure and complexity of relational queries. J. Comput. Syst. Sci. 25, 99–128 (1982)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. SIGMOD Rec. 26(1), 65–74 (1997)CrossRefGoogle Scholar
  6. 6.
    Cuzzocrea, A., Saccà, D., Ullman, J.D.: Panel on big data: a research agenda. In: IDEAS, pp. 198–203 (2013)Google Scholar
  7. 7.
    The Economist: Data, data everywhere. The Economist, February 2010Google Scholar
  8. 8.
    Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of aggregate functions in the DLV system. TPLP 8(5–6), 545–580 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans. Database Syst. 30(1), 174–210 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Guzzo, A., Moccia, L., Saccà, D., Serra, E.: Solving inverse frequent itemset mining with infrequency constraints via large-scale linear programs. TKDD 7(4) p. 18 (2013)Google Scholar
  11. 11.
    Han, J., Micheline Kamber, J.P.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, Burlington (2011)Google Scholar
  12. 12.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute, May 2011Google Scholar
  13. 13.
    Moens, M.: Automatic Indexing and Abstracting of Document Texts. Kluwer Academic Publishers, Berlin (2000)Google Scholar
  14. 14.
    Nature: Big data. Nature, September 2008Google Scholar
  15. 15.
    Osinski, S., Stefanowski, J., Weiss, D.: Lingo search results clustering algorithm based on singular value decomposition. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining, vol. 25, pp. 359–368. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Saccà, D., Serra, E.: Data posting: a new frontier for data exchange in the big data era. In: AMW (2013)Google Scholar
  17. 17.
    Saccà, D., Serra, E., Guzzo, A.: Count constraints and the inverse OLAP problem: definition, complexity and a step toward aggregate data exchange. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 352–369. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Vardi, M.Y.: The complexity of relational query languages. In: STOC, pp. 137–146 (1982)Google Scholar
  19. 19.
    White, R.W., Roth, R.A.: Exploratory Search: Beyond the Query-Response Paradigm: Synthesis Lectures on Information Concepts Retrieval, and Services. Morgan & Claypool Publishers, San Rafael (2009)Google Scholar
  20. 20.
    Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search and browsing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2003, pp. 401–408 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.DIMESUniversity of CalabriaRendeItaly
  2. 2.ICAR-CNRRendeItaly

Personalised recommendations