Problems with Light Emitting Devices and Their Solutions

  • Motoichi OhtsuEmail author
Part of the Nano-Optics and Nanophotonics book series (NON)


This book reviews how to use an indirect transition-type semiconductor to construct light emitting diodes (LEDs) and lasers, which has not been possible with conventional methods employed in materials science and technology. First, this chapter surveys the problems to be solved. Some strategies and principles achieve solutions are reviewed. Detailed discussions of the theoretical aspects are described in Appendices A–E.


Photon Energy Spontaneous Emission Dopant Atom Hole Recombination Coherent Phonon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Yang, M. Willkinson, E.J. Austin, K.P. O’ Donnell, Phys. Rev. Lett. 70, 323 (1993)Google Scholar
  2. 2.
    ZhI Alferov, Semiconductors 32, 1 (1988)Google Scholar
  3. 3.
    R.A. Milano, P.D. Dapkus, G.E. Stillman, I.E.E.E. Tran, Electron Devices 29, 266 (1982)Google Scholar
  4. 4.
    U.S. Department of Health and Human Services, Public Health Service, National Inst. Health, National toxicology program (ed.), NTP Technical Report on the Toxicology and Carcinogenesis Studies of Indium Phosphide (U.S. Department of Health and Human Services, Washington, DC., 2012) NTP TR 499Google Scholar
  5. 5.
    K.T. Delaney, P. Rinke, C.G. Van de Walle, Appl. Phys. Lett. 94, 191109 (2009)Google Scholar
  6. 6.
    K.D. Hirschman, L. Tysbekov, S.P. Duttagupta, P.M. Fauchet, Nature 384, 338 (1996)Google Scholar
  7. 7.
    Z.H. Lu, D.J. Lockwood, J.-M. Baribeau, Nature 378, 258 (1995)Google Scholar
  8. 8.
    L. Dal Negro, R. Li, J. Warga, S.N. Beasu, Appl. Phys. Lett. 92, 181105 (2008)Google Scholar
  9. 9.
    T. Komoda, Nucl. Instrum. Methods Phys. Res. Sect.B, Beam Interact. Mater. Atoms 96, 387 (1995)Google Scholar
  10. 10.
    S. Yerci, R. Li, L. Dal Negro, Appl. Phys. Lett. 97, 081109 (2010)Google Scholar
  11. 11.
    S.K. Ray, S. Das, R.K. Singha, S. Manna, A. Dhar, Nanoscale Res. Lett. 6, 224 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    D. Pines, Elementary Excitation in Solids (Perseus Books, Reading, 1999)Google Scholar
  13. 13.
    M. Ohtsu, K. Kobayashi, Optical Near Fields (Perseus Books, Reading, Massachusetts, 1999) (Springer, Berlin, 2004)Google Scholar
  14. 14.
    M. Thomson, Modern Particle Physics (Cambridge University Press, Cambridge, 2013)Google Scholar
  15. 15.
    R.P. Feynman, The Theory of Fundamental Processes (W.A. Benjamin, New York, 1962), pp. 95–100Google Scholar
  16. 16.
    M. Ohtsu, H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum Publishers, New York, 1999), pp. 29–31CrossRefGoogle Scholar
  17. 17.
    J.J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, 1967)Google Scholar
  18. 18.
    T.D. Newton, E.P. Wigner, Rev. Mod. Phys. 21, 400 (1949)ADSCrossRefGoogle Scholar
  19. 19.
    M. Ohtsu, Progress in Nanophotonics 1, ed. by M. Ohtsu (Springer, Berlin, 2011), pp. 1–4Google Scholar
  20. 20.
    M. Ohtsu, Dressed Photon (Springer, Berlin, 2013), pp. 11–18Google Scholar
  21. 21.
    J. Poutanen, B.E. Stern, Mon. Not. R. Astron. Soc. 372, 1217 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    B.E. Stern, J. Poutanen, Mon. Not. R. Astron. Soc. 383, 1695 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Graduate School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations