Skip to main content

KANSEI (Emotional) Information Classifications of Music Scores Using Self Organizing Map

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9799)


We classified KANSEI (emotional) information for musical compositions by using only the notes in the music score. This is in contrast to the classification of music by using audio files, which are taken from a performance with the emotional information processed by the instrumentalists. The first is classification into one of two classes, duple meter or irregular meter. The second is classification into one of the two classes, slow vs. fast (threshold tempo: ♩ = 110). The classification of the musical meter is based on identifying the meter indicated in the score. For tempo classification, we generally used the tempo indication in the score, but we evaluate classification that includes tempo revisions through a subject’s emotions to be accurate. We performed classification for both the meter and tempo evaluations with a recognition rate above 70 % by using self-organizing maps for unsupervised online training. Particularly, in the tempo classification, a computer successfully processed the emotional information directed.


  • KANSEI information
  • Emotional information
  • Music score classification
  • Self-organizing
  • Feature map

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42007-3_50
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-42007-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. Bill, M., Juan, R., Penousal, M., Dwight, K., Timothy, H., Walter, P., Robert, B.D.: Zipf’s law, music classification, and aesthetics. Comput. Music J. 29(1), 55–69 (2005)

    CrossRef  Google Scholar 

  2. Saadia, Z., Fawad, H., Muhammad, R., Muhammad, H.Y., Hafiz, A.H.: Optimized audio classification and segmentation algorithm by using ensemble methods. Math. Probl. Eng. 2015, 1–10 (2015)

    Google Scholar 

  3. Srimani, P.K., Parimala, Y.G.: Artificial neural network approach to develop unique classification and raga identification tools for pattern recognition in carnatic music. In: AIP Conference Proceedings, vol. 1414, pp. 227–231 (2011)

    Google Scholar 

  4. Juhász, Z., Sipos, J.: A comparative analysis of Eurasian folksong corpora, using self organising maps. J. Interdisc. Music Stud. 4(11), 1–16 (2010)

    Google Scholar 

  5. Andreas, R., Elias, P., Dieter, M., Andreas, R., Elias, P., Dieter, M.: The SOM-enhanced JukeBox: organization and visualization of music collections based on perceptual models. J. New Music Res. 32(2), 193–210 (2013)

    Google Scholar 

  6. Ofer, D., Yoram, R.: An evaluation of musical score characteristics for automatic classification of composers. Comput. Music J. 35(3), 86–97 (2011)

    CrossRef  Google Scholar 

  7. van Peter, K.: A comparison between global and local features for computational classification of folk song melodies. J. New Music Res. 42(1), 1–18 (2013)

    MathSciNet  CrossRef  Google Scholar 

  8. Moise A., Constantin A., Bucur G.: Musical notes recognition using artificial neural networks. In: Annals of DAAAM & Proceedings, pp. 1159–1160 (2009)

    Google Scholar 

  9. Gerhard, M.: Interpretation Vom Text zum Klang. Schott Music GmbH & Co. KG, Mainz (2006)

    Google Scholar 

  10. Oshima F.: “Wie man richtig die Noten list” Historische Musikpraxis von Bach bis Schubert NOtizen nach Vortra gen von Ingomar Rainer. Gendai Guitar Co. ltd., Tokyo (2009)

    Google Scholar 

  11. Yasushi, A.: Basics of Music. Iwanami Shoten Publishers, Tokyo (1971)

    Google Scholar 

  12. Carl, H.: The Piano Handbook: A Complete Guide for Mastering Piano. Backbeat Books, Milwaukee (2002)

    Google Scholar 

  13. ISO 16:1975, Acoustics– Standard tuning frequency (Standard musical pitch), ISO (1975)

    Google Scholar 

  14. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001)

    CrossRef  MATH  Google Scholar 

  15. Sandhya, S.: Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition. Auerbach Publications, New York (2006)

    MATH  Google Scholar 

  16. Pavel, S., Orga, K.: Investigation on training parameters of self-organizing maps. Baltic J. Mod. Comput. 2(2), 45–55 (2014)

    Google Scholar 

  17. Ron, W., Lutgarde, M.C.B.: Self-and Super-organizing maps in R: the kohonen Package. J. Stat. Softw. 21(5), 1–19 (2007)

    Google Scholar 

  18. The R Project for Statistical Computing.

  19. Yan, J.: SOM Self-Organizing Map. R package version 0.3-4.

Download references


We thanks to Kawamura’s students, Mika Watanabe and Soh Sato for their supports who participated in the experiment.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Satoshi Kawamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kawamura, S., Yoshida, H. (2016). KANSEI (Emotional) Information Classifications of Music Scores Using Self Organizing Map. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42006-6

  • Online ISBN: 978-3-319-42007-3

  • eBook Packages: Computer ScienceComputer Science (R0)