Skip to main content

Bibliometric Tools for Discovering Information in Database

  • Conference paper
  • First Online:
Trends in Applied Knowledge-Based Systems and Data Science (IEA/AIE 2016)

Abstract

In bibliometrics, there are two main procedures to explore a research field: performance analysis and science mapping. Performance analysis aims at evaluating groups of scientific actors (countries, universities, departments, researchers) and the impact of their activity on the basis of bibliographic data. Science mapping aims at displaying the structural and dynamic aspects of scientific research, delimiting a research field, and quantifying and visualizing the detected sub-fields by means of co-word analysis or documents co-citation analysis. In this paper we present two bibliometric tools that we have developed in our research laboratory SECABA: (i) H-Classics to develop performance analysis based on Highly Cited Papers and (ii) SciMAT to develop science mapping guided by performance bibliometric indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso, S., Cabrerizo, F.J., Herrera-Viedma, E., Herrera, F.: H-index: a review focused in its variants, computation and standardization for different scientific fields. J. Inf. 3(4), 273–289 (2009)

    Article  Google Scholar 

  2. Bar-Ilan, J.: Citations to the “introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics 82(3), 495–506 (2010)

    Article  Google Scholar 

  3. Börner, K., Chen, C., Boyack, K.W.: Visualizing knowledge domains. Ann. Rev. Inf. Sci. Technol. 37, 179–255 (2003)

    Article  Google Scholar 

  4. Burrell, Q.L.: On the h-index, the size of the Hirsch core and Jin’s A-index. J. Inf. 1(2), 170–177 (2007)

    Article  MathSciNet  Google Scholar 

  5. Cahlik, T.: Comparison of the maps of science. Scientometrics 49(3), 373–387 (2000)

    Article  Google Scholar 

  6. Callon, M., Courtial, J.P., Turner, W.A., Bauin, S.: From translations to problematic networks: an introduction to co-word analysis. Soc. Sci. Inf. 22(2), 191–235 (1983)

    Article  Google Scholar 

  7. Callon, M., Courtial, J.P., Laville, F.: Co-word analysis as a tool for describing the network of interactions between basic and technological research - the case of polymer chemistry. Scientometrics 22(1), 155–205 (1991)

    Article  Google Scholar 

  8. Cartes-Velásquez, R., Manterola-Delgado, C.: Bibliometric analysis of articles published in ISI dental journals, 2007–2011. Scientometrics 98(3), 2223–2233 (2014)

    Article  Google Scholar 

  9. Cobo, M.J., Chiclana, F., Collop, A., de Oña, J., Herrera-Viedma, E.: A bibliometric analysis of the intelligent transportation systems research based on science mapping. IEEE Trans. Intell. Transp. Syst. 11(2), 901–908 (2014)

    Article  Google Scholar 

  10. Cobo, M.J., López-Herrera, A.G., Herrera, F., Herrera-Viedma, E.: A note on the ITS topic evolution in the period 2000–2009 at T-ITS. IEEE Trans. Intell. Transp. Syst. 13(1), 413–420 (2012)

    Article  MATH  Google Scholar 

  11. Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., Herrera, F.: An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J. Inf. 5(1), 146–166 (2011)

    Article  MATH  Google Scholar 

  12. Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., Herrera, F.: Science mapping software tools: review, analysis and cooperative study among tools. J. Am. Soc. Inform. Sci. Technol. 62(7), 1382–1402 (2011)

    Article  MATH  Google Scholar 

  13. Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., Herrera, F.: Scimat: a new science mapping analysis software tool. J. Am. Soc. Inform. Sci. Technol. 63(8), 1609–1630 (2012)

    Article  MATH  Google Scholar 

  14. Cobo, M.J., Mártinez, M.A., Gutiérrez-Salcedo, M., Fujita, E., Herrera-Viedma, H.: 25 years at knowledge-based systems: a bibliometric analysis. Knowl.-Based Syst. 80, 3–13 (2015)

    Article  Google Scholar 

  15. Cook, D.J., Holder, L.B.: Mining Graph Data. Wiley-Interscience, Hoboken (2006)

    Book  MATH  Google Scholar 

  16. Coulter, N., Monarch, I., Konda, S.: Software engineering as seen through its research literature: a study in co-word analysis. J. Am. Soc. Inform. Sci. Technol. 49(13), 1206–1223 (1998)

    Article  Google Scholar 

  17. Falagas, M.E., Pitsouni, E.I., Malietzis, G.A., Pappas, G.: Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J. 22(2), 338–342 (2008)

    Article  Google Scholar 

  18. Feijoo, J.F., Limeres, J., Fernández-Varela, M., Ramos, I., Diz, P.: The 100 most cited articles in dentistry. Clin. Oral Investig. 18(3), 699–706 (2013)

    Article  Google Scholar 

  19. Gao-Yong, L., Ji-Ming, H., Hui-Ling, W.: A co-word analysis of digital library field in China. Scientometrics 91(1), 203–217 (2012)

    Article  Google Scholar 

  20. Garfield, E.: Citation analysis as a tool in journal evaluation. Science 178(60), 417–479 (1972)

    Google Scholar 

  21. Garfield, E.: Introducing citation classics the human side of scientific reports. Curr. Comments 1, 5–7 (1977)

    Google Scholar 

  22. Garfield, E.: 100 citation classics from the journal of the American medical association. J. Am. Med. Assoc. 257, 52–59 (1987)

    Article  Google Scholar 

  23. Garfield, E.: Scientography: mapping the tracks of science. Curr. Contents Soc. Behav. Sci. 7(45), 5–10 (1994)

    Google Scholar 

  24. He, Q.: Knowledge discovery through co-word analysis. Libr. Trends 48(1), 133–159 (1999)

    Google Scholar 

  25. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Nat. Acad. Sci. 102, 16569–16572 (2005)

    Article  MATH  Google Scholar 

  26. Huang, M.-H., Chang, C.-P.: Detecting research fronts in oled field using bibliographic coupling with sliding window. Scientometrics 98(3), 1721 (2014)

    Article  Google Scholar 

  27. Ibrahim, G.M., Snead, O.C., Rutka, J.T., Lozano, A.M.: The most cited works in epilepsy: trends in the “citation classics”. Epilepsia 53(5), 765–770 (2012)

    Article  Google Scholar 

  28. Jin, B.H., Liang, L.M., Rousseau, R., Egghe, L.: The R- and AR-indices: complementing the h-index. Chin. Sci. Bull. 52(6), 855–863 (2007)

    Article  Google Scholar 

  29. Martínez, M.A., Cobo, M.J., Herrera, M., Herrera-Viedma, E.: Analyzing the scientific evolution of social work using science mapping. Res. Soc. Work Pract. 5(2), 257–277 (2015)

    Article  Google Scholar 

  30. Martínez, M.A., Herrera, M., López-Gijón, J., Herrera-Viedma, E.: H-classics: characterizing the concept of citation classics through h-index. Scientometrics 98, 1971–1983 (2014)

    Article  Google Scholar 

  31. Murgado-Armenteros, E., Gutiérrez-Salcedo, M., Torres-Ruiz, F.J., Cobo, M.J.: Analysing the conceptual evolution of qualitative marketing research through science mapping analysis. Scientometrics 102(1), 519–557 (2014)

    Article  Google Scholar 

  32. Noyons, E.C.M., Moed, H.F., Luwel, M.: Combining mapping and citation analysis for evaluative bibliometric purposes: a bibliometric study. J. Am. Soc. Inform. Sci. 50(2), 115–131 (1999)

    Article  Google Scholar 

  33. Ozel, B.: Individual cognitive structures and collaboration patterns in academia. Scientometrics 91(2), 539–555 (2012)

    Article  Google Scholar 

  34. Peters, H.P.F., van Raan, A.F.J.: Co-word-based science maps of chemical engineering. part i: representations by direct multidimensional scaling. Res. Policy 22(1), 23–45 (1993)

    Article  Google Scholar 

  35. Ponce, F.A., Lozano, A.M.: The most cited works in Parkinson’s disease. Mov. Disord. 26(3), 380–390 (2011)

    Article  Google Scholar 

  36. Porter, A.L., Youtie, J.: How interdisciplinary is nanotechnology? J. Nanopart. Res. 11(5), 1023–1041 (2009)

    Article  Google Scholar 

  37. Rodriguez-Ledesma, A., Cobo, M.J., Lopez-Pujalte, C., Herrera-Viedma, E.: An overview of animal science research 1945–2011 through science mapping analysis. J. Anim. Breed. Genet. 132(6), 475–497 (2014)

    Article  Google Scholar 

  38. Rousseau, R.: New developments related to the Hirsch index. Sci. Focus 1(4), 23–25 (2006). (in Chinese) An English translation can be found at: http://eprints.rclis.org/7616/

    Google Scholar 

  39. Small, H.: Visualizing science by citation mapping. J. Am. Soc. Inform. Sci. 50(9), 799–813 (1999)

    Article  Google Scholar 

  40. Smith, D.R.: Ten citation classics from the New Zealand medical journal. N. Z. Med. J. 120, 2871–2875 (2007)

    Google Scholar 

  41. Stack, S.: Citation classics in deviant behavior: a research note. Deviant Behav. 34(2), 85–96 (2013)

    Article  Google Scholar 

  42. Sternitzke, C., Bergmann, I.: Similarity measures for document mapping: a comparative study on the level of an individual scientist. Scientometrics 78(1), 113–130 (2009)

    Article  Google Scholar 

  43. Tam, W.W., Wong, E.L., Wong, F.C., Cheung, A.W.L.: Citation classics in the integrative and complementary medicine literature: 50 frequently cited articles. Eur. J. Integr. Med. 4, e77–e83 (2012)

    Article  Google Scholar 

  44. Tang, L., Shapira, P.: China-US scientific collaboration in nanotechnology: patterns and dynamics. Scientometrics 88(1), 1–16 (2011)

    Article  Google Scholar 

  45. van Eck, N.J., Waltman, L.: How to normalize cooccurrence data? an analysis of some well-known similarity measures. J. Am. Soc. Inform. Sci. Technol. 60(8), 1635–1651 (2009)

    Article  Google Scholar 

  46. van Raan, A.F.J.: Measuring science. In: Moed, H.F., Glanzel, W., Schmoch, U. (eds.) Handbook of Quantitative Science and Technology Research, pp. 19–50. Springer, Netherlands (2005)

    Google Scholar 

  47. Zong, Q.-J., Shen, H.-Z., Yuan, Q.-J., Xiao-Wei, H., Hou, Z.-P., Deng, S.-G.: Doctoral dissertations of library and information science in china: a co-word analysis. Scientometrics 94(2), 781–799 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge FEDER financial support from the Project TIN2013-40658-P, and also the financial support from the Andalusian Excellence Project TIC-5991.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Herrera-Viedma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Herrera-Viedma, E., Martinez, M.A., Herrera, M. (2016). Bibliometric Tools for Discovering Information in Database. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42007-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42006-6

  • Online ISBN: 978-3-319-42007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics