Skip to main content

Tolerance of Microbial Biocatalysts to Feedstocks, Products, and Environmental Conditions

  • Chapter
  • First Online:

Abstract

Bioreactor conditions and environmental stressors present during fermentation can negatively impact the productivity of industrial biocatalysts. Robustness of biocatalysts in fermentation conditions is thus important for the economical viability of bio-based production. Temperature, pH, and osmotic pressure inside the bioreactor are often not optimal for cell growth. Feedstocks (particularly sustainably sourced) and products (desired or side) often contain toxic components that further reduce biocatalyst performance. The physiological effects of many industrially relevant environmental stressors have been studied extensively. However, due to the complexity of cellular processes and the significant knowledge gap in genotype-phenotype relationships associated with these complex phenotypes, the rational engineering of robust biocatalysts is currently limited. Traditional strain developments rely on random approaches, and have been successful at generating more robust biocatalysts. Random approaches combined with new genomic technologies will start to fill the genotype-phenotype knowledge gap, making the rational engineering of robust biocatalysts for industrial applications more readily achievable. This chapter will focus on the common environmental stressors present in industrial fermentation; the stressors will be divided into three sections: feedstock toxicity, fermentation conditions, and product toxicity. Each section will describe the known mechanisms of toxicity associated with each stressor followed by examples of successful development of strains with enhanced tolerance, with a focus on the tools used, and discussions of the known molecular mechanisms associated with tolerance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3

    Google Scholar 

  • Almario MP, Reyes LH, Kao KC (2013) Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110(10):2616–2623. doi:10.1002/bit.24938

    Article  CAS  PubMed  Google Scholar 

  • Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349. doi:10.1002/Jctb.1676

    Article  CAS  Google Scholar 

  • Almeida JR, Roder A, Modig T, Laadan B, Liden G, Gorwa-Grauslund MF (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78(6):939–945. doi:10.1007/s00253-008-1364-y

    Article  CAS  PubMed  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Altendorf K, Booth I, Gralla J, Greie J, Rosenthal A, Wood J (2009) Osmotic Stress. EcoSal Plus. doi:10.1128/ecosalplus.5.4.5

    PubMed  Google Scholar 

  • An MZ, Tang YQ, Mitsumasu K, Liu ZS, Shigeru M, Kenji K (2011) Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. Biotechnol Lett 33(7):1367–1374. doi:10.1007/s10529-011-0576-x

    Article  CAS  PubMed  Google Scholar 

  • Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180(4):938–944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ask M, Bettiga M, Mapelli V, Olsson L (2013a) The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol Biofuels 6(1):22. doi:10.1186/1754-6834-6-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ask M, Mapelli V, Hock H, Olsson L, Bettiga M (2013b) Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact 12:87. doi:10.1186/1475-2859-12-87

    Article  PubMed  PubMed Central  Google Scholar 

  • Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15(13):1351–1357. doi:10.1038/Nbt1297-1351

    Article  CAS  PubMed  Google Scholar 

  • Basak S, Geng H, Jiang R (2014) Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. J Biotechnol 173:68–75. doi:10.1016/j.jbiotec.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  • Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW (2003) Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur J Biochem 270(15):3189–3195. doi:10.1046/j.1432-1033.2003.03701.x

    Article  CAS  PubMed  Google Scholar 

  • Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Safety 3(1):1–20. doi:10.1111/j.1541-4337.2004.tb00057.x

    Article  CAS  Google Scholar 

  • Boot IR, Cash P, O’Byrne C (2002) Sensing and adapting to acid stress. Antonie Van Leeuwenhoek 81(1–4):33–42

    Article  PubMed  Google Scholar 

  • Booth IR (1989) The preservation of foods by low pH in Mechanisms of action of food preservation procedures

    Google Scholar 

  • Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181(11):3525–3535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cayley S, Record MT Jr (2004) Large changes in cytoplasmic biopolymer concentration with osmolality indicate that macromolecular crowding may regulate protein-DNA interactions and growth rate in osmotically stressed Escherichia coli K-12. J Mol Recognit 17(5):488–496. doi:10.1002/jmr.695

    Article  CAS  PubMed  Google Scholar 

  • Chang YY, Cronan JE (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33(2):249–259. doi:10.1046/j.1365-2958.1999.01456.x

    Article  CAS  PubMed  Google Scholar 

  • Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773(8):1311–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Ling H, Chang MW (2013) Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels 6:21. doi:10.1186/1754-6834-6-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheroutre-Vialette M, Lebert I, Hebraud M, Labadie JC, Lebert A (1998) Effects of pH or a(w) stress on growth of Listeria monocytogenes. Int J Food Microbiol 42(1–2):71–77 S0168-1605(98)00064-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Baumler DJ, Kaspar CW (2000) Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 66(9):3911–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6(1):89. doi:10.1186/1754-6834-6-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4(1):32. doi:10.1186/1754-6834-4-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezeji T, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85(6):1697–1712. doi:10.1007/s00253-009-2390-0

    Article  CAS  PubMed  Google Scholar 

  • Gaida SM, Al-Hinai MA, Indurthi DC, Nicolaou SA, Papoutsakis ET (2013) Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Res 41(18):8726–8737. doi:10.1093/nar/gkt651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414. doi:10.1038/nchembio.2007.5

    Article  CAS  PubMed  Google Scholar 

  • Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31(5):535–569. doi:10.1111/j.1574-6976.2007.00076.x

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi H, Bennett BD, Amini S, Reaves ML, Hottes AK, Rabinowitz JD, Tavazoie S (2010) Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli. Mol Syst Biol 6:378. doi:10.1038/msb.2010.33

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71(3):339–349. doi:10.1007/s00253-005-0142-3

    Article  CAS  PubMed  Google Scholar 

  • Haft RJ, Keating DH, Schwaegler T, Schwalbach MS, Vinokur J, Tremaine M, Peters JM, Kotlajich MV, Pohlmann EL, Ong IM, Grass JA, Kiley PJ, Landick R (2014) Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci USA 111(25):E2576–E2585. doi:10.1073/pnas.1401853111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hottiger T, De Virgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219(1–2):187–193

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Chen L, Wang J, Zhang W (2014) Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol Adv 32(2):541–548. doi:10.1016/j.biotechadv.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  • Jonsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16. doi:10.1186/1754-6834-6-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordan KN, Oxford L, O’Byrne CP (1999) Survival of low-pH stress by Escherichia coli O157:H7: correlation between alterations in the cell envelope and increased acid tolerance. Appl Environ Microbiol 65(7):3048–3055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapteyn JC, ter Riet B, Vink E, Blad S, De Nobel H, Van Den Ende H, Klis FM (2001) Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39(2):469–479 mmi2242 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kaushik JK, Bhat R (2003) Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem 278(29):26458–26465. doi:10.1074/jbc.M300815200

    Article  CAS  PubMed  Google Scholar 

  • Khankal R, Chin JW, Ghosh D, Cirino PC (2009) Transcriptional effects of CRP* expression in Escherichia coli. J Biol Eng 3:13. doi:10.1186/1754-1611-3-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Hahn JS (2013) Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol 79(16):5069–5077. doi:10.1128/Aem.00643-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein-Marcuschamer D, Stephanopoulos G (2008) Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci USA 105(7):2319–2324. doi:10.1073/pnas.0712177105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. doi:10.1007/s00253-004-1642-2

    Article  CAS  PubMed  Google Scholar 

  • Koppram R, Albers E, Olsson L (2012) Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 5(1):32. doi:10.1186/1754-6834-5-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer R (2010) Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem Rec 10(4):217–229. doi:10.1002/tcr.201000005

    Article  PubMed  Google Scholar 

  • Laadan B, Almeida JR, Radstrom P, Hahn-Hagerdal B, Gorwa-Grauslund M (2008) Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast 25(3):191–198. doi:10.1002/yea.1578

    Article  CAS  PubMed  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology 24(3–4):151–159. doi:10.1016/S0141-0229(98)00101-X

    Article  CAS  Google Scholar 

  • Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW (1995) Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177(14):4097–4104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S (1992) Heat-shock proteins and stress tolerance in microorganisms. Curr Opin Genet Dev 2(5):748–755

    Article  CAS  PubMed  Google Scholar 

  • Ling H, Teo W, Chen B, Leong SS, Chang MW (2014) Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol 29:99–106

    Article  CAS  PubMed  Google Scholar 

  • Mager WH, De Kruijff AJ (1995) Stress-induced transcriptional activation. Microbiol Rev 59(3):506–531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15(9):2227–2235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza I, Quintero FJ, Bressan RA, Hasegawa PM, Pardo JM (1996) Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J Biol Chem 271(38):23061–23067

    Article  CAS  PubMed  Google Scholar 

  • Meury J (1988) Glycine betaine reverses the effects of osmotic-stress on DNA Replication and cellular division in Escherichia coli. Arch Microbiol 149(3):232–239. doi:10.1007/Bf00422010

    Article  CAS  PubMed  Google Scholar 

  • Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75(13):4315–4323. doi:10.1128/AEM.00567-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morano KA, Liu PC, Thiele DJ (1998) Protein chaperones and the heat shock response in Saccharomyces cerevisiae. Curr Opin Microbiol 1(2):197–203 S1369-5274(98)80011-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190(4):1157–1195 10.1534/genetics.111.128033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdock L, Burke T, Coumoundouros C, Culham DE, Deutch CE, Ellinger J, Kerr CH, Plater SM, To E, Wright G, Wood JM (2014) Analysis of strains lacking known osmolyte accumulation mechanisms reveals contributions of osmolytes and transporters to protection against abiotic stress. Appl Environ Microbiol 80(17):5366–5378. doi:10.1128/AEM.01138-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12(4):307–331. doi:10.1016/j.ymben.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31(1):20–31. doi:10.3109/07388551003757816

    Article  CAS  PubMed  Google Scholar 

  • Park YK, Bearson B, Bang SH, Bang IS, Foster JW (1996) Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Mol Microbiol 20(3):605–611. doi:10.1046/j.1365-2958.1996.5441070.x

    Article  CAS  PubMed  Google Scholar 

  • Parrou JL, Teste MA, Francois J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology-Uk 143:1891–1900

    Article  CAS  Google Scholar 

  • Peralta-Yahya PP, Zhang F, del Cardayré SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328. doi:10.1038/nature11478

    Article  CAS  PubMed  Google Scholar 

  • Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF, Liden G (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23(6):455–464. doi:10.1002/yea.1370

    Article  CAS  PubMed  Google Scholar 

  • Portillo MD, Saadeddin A (2014) Recent trends in ionic liquid (IL) tolerant enzymes and microorganisms for biomass conversion. Crit Rev Biotechnol. doi:10.3109/07388551.2013.843069

    Google Scholar 

  • Quijano G, Couvert A, Amrane A (2010) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101(23):8923–8930. doi:10.1016/j.biortech.2010.06.161

    Article  CAS  PubMed  Google Scholar 

  • Raja N, Goodson M, Smith DG, Rowbury RJ (1991) Decreased DNA damage by acid and increased repair of acid-damaged DNA in acid-habituated Escherichia coli. J Appl Bacteriol 70(6):507–511

    Article  CAS  PubMed  Google Scholar 

  • Reyes LH, Almario MP, Winkler J, Orozco MM, Kao KC (2012) Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metab Eng 14(5):579–590. doi:10.1016/j.ymben.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  • Richard H, Foster JW (2004) Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186(18):6032–6041. doi:10.1128/JB.186.18.6032-6041.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth WG, Leckie MP, Dietzler DN (1985) Osmotic stress drastically inhibits active transport of carbohydrates by Escherichia coli. Biochem Biophys Res Commun 126(1):434–441 0006-291X(85)90624-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Russell JB (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol 73(5):363–370. doi:10.1111/j.1365-2672.1992.tb04990.x

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291. doi:10.1007/s10295-003-0049-x

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192(2):289–318. doi:10.1534/genetics.112.140863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahsavarani H, Sugiyama M, Kaneko Y, Chuenchit B, Harashima S (2012) Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnol Adv 30(6):1289–1300. doi:10.1016/j.biotechadv.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  • Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36(1):139–147. doi:10.1007/s10295-008-0481-z

    Article  CAS  PubMed  Google Scholar 

  • Sikkema J, De Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayré SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562. doi:10.1038/nature08721

    Article  CAS  PubMed  Google Scholar 

  • Terada H (1990) Uncouplers of oxidative phosphorylation. Environ Health Perspect 87:213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevelein JM (1994) Signal transduction in yeast. Yeast 10(13):1753–1790

    Article  CAS  PubMed  Google Scholar 

  • Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69(8):4951–4965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unnikrishnan I, Miller S, Meinke M, LaPorte DC (2003) Multiple positive and negative elements involved in the regulation of expression of GSY1 in Saccharomyces cerevisiae. J Biol Chem 278(29):26450–26457. doi:10.1074/jbc.M211808200

    Article  CAS  PubMed  Google Scholar 

  • Vancov T, Alston AS, Brown T, McIntosh S (2012) Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy 45:1–6. doi:10.1016/j.renene.2012.02.033

    Article  CAS  Google Scholar 

  • Vogel J, Wagner EG (2007) Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 10(3):262–270

    Article  CAS  PubMed  Google Scholar 

  • Warnecke T, Gill RT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact 4(1):25. doi:10.1186/1475-2859-4-25

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber FJ, de Bont JA (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1286 (3):225–245

    Google Scholar 

  • Winkler JD, Garcia C, Olson M, Callaway E, Kao KC (2014) Evolved osmotolerant Escherichia coli mutants frequently exhibit defective N-acetylglucosamine catabolism and point mutations in cell shape-regulating protein MreB. Appl Environ Microbiol 80(12):3729–3740. doi:10.1128/AEM.00499-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63(1):230–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood JM (2015) Bacterial responses to osmotic challenges. J Gen Physiol 145(5):381–388. doi:10.1085/jgp.201411296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto A, Mizukami Y, Sakurai H (2005) Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 280(12):11911–11919

    Article  CAS  PubMed  Google Scholar 

  • Yuk HG, Marshall DL (2004) Adaptation of Escherichia coli O157: H7 to pH alters membrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. Appl Environ Microbiol 70(6):3500–3505. doi:10.1128/Aem.70.6.3500-3505.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Chong H, Ching CB, Jiang R (2012) Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Biotechnol Bioeng 109(5):1165–1172. doi:10.1002/bit.24411

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144(1):23–30. doi:10.1016/j.jbiotec.2009.05.001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katy C. Kao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, M., Peabody, G., Kao, K.C. (2016). Tolerance of Microbial Biocatalysts to Feedstocks, Products, and Environmental Conditions. In: Van Dien, S. (eds) Metabolic Engineering for Bioprocess Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-319-41966-4_5

Download citation

Publish with us

Policies and ethics