Advertisement

Human-Robot Interaction: Proximity and Speed—Slowly Back Away from the Robot!

  • Keith R. MacArthurEmail author
  • Kimberly Stowers
  • P. A. Hancock
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 499)

Abstract

This experiment was designed to evaluate the effects of proximity and speed of approach on trust in human-robot interaction (HRI). The experimental design used a 2 (Speed) × 2 (Proximity) mixed factorial design and trust levels were measured by self-report on the Human Robot Trust Scale and the Trust in Automation Scale. Data analyses indicate proximity [F(2, 146) = 6.842, p < 0.01, partial ŋ2 = 0.086] and speed of approach [F(2, 146) = 2.885, p = 0.059, partial ŋ2 = 0.038] are significant factors contributing to changes in trust levels.

Keywords

Human factors Human-robot interaction HRI Human-robot trust Proximity Proxemics Speed Psychological experiments Human robot trust scale Trust in automation scale 

Notes

Acknowledgments

We would like to thank Gabriella M. Hancock and Theresa T. Kessler for their assistance in this article. The research reported in this document was performed in connection with Contract No. W911NF-10-2-0016 with the U.S. Army Research Laboratory, under UCF, P.A. Hancock, Principal Investigator. The views and conclusions contained in this document are those of the authors and should not be interpreted as presenting the official policies or position, either expressed or implied, of the U.S. Army Research Laboratory or the U.S. government unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. The U.S. government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein.

References

  1. 1.
    Mumm, J. Mutlu, B.: Human-robot proxemics: physical and psychological distancing in human-robot interaction: In: 6th ACM/IEEE International Conference on Human-Robot Interaction, pp. 331–338 (2011)Google Scholar
  2. 2.
    Lee, J.D., See, K.A.: Trust in automation: designing for appropriate reliance. Hum. Factors 46(1), 50–80 (2004)CrossRefGoogle Scholar
  3. 3.
    Billings, D.R., Schaefer, K.E., Chen, J.Y., Kocsis, V., Barrera, M., Cook, J., Ferrer, M., Hancock, P.A.: Human-animal trust as an analog for human-robot trust: a review of current evidence (No. ARL-TR-5949). Army Research Laboratory (2012), http://www.arl.army.mil/arlreports/2012/ARL-TR-5949.pdf
  4. 4.
    Stowers, K., Oglesby, J., Leyva, K., Iwig, C., Shimono, M., Hughes, A., Salas, E.: A framework to guide the assessment of human-machine systems. Hum. Factors, submittedGoogle Scholar
  5. 5.
    Hancock, P.A., Billings, D.R., Schaefer, K.E., Chen, J.Y., de Visser, E.J., Parasuraman, R.: A meta-analysis of factors affecting trust in human-robot interaction. Hum. Factors 53(5), 517–527 (2011)CrossRefGoogle Scholar
  6. 6.
    Scott, J., Marshall, G.: A Dictionary of Sociology. Oxford University Press, USA (2009)CrossRefGoogle Scholar
  7. 7.
    Krämer, N.C., von der Pütten, A., Eimler, S.: Human-agent and human-robot interaction theory: similarities to and differences from human-human interactions. Hum-Comput. Interact. 396, 215–240 (2012)Google Scholar
  8. 8.
    Hall, E.T.: A system for the notation of proxemic behavior. Am. Anthropol. 65(5), 1003–1026 (1963)CrossRefGoogle Scholar
  9. 9.
    Russell, J.A., Ward, L.M.: Environmental psychology. Annu. Rev. Psychol. 33(1), 651–689Google Scholar
  10. 10.
    Balgooyen, T.J.: A group exercise in personal space. Small Group Behav. 15(4), 553–563 (1984)CrossRefGoogle Scholar
  11. 11.
    Takayama, L., Pantofaru, C.: Influences on proxemic behaviors in human-robot interaction. In: 22nd IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 2009, pp. 5495–5502. St. Louis, MO (2009)Google Scholar
  12. 12.
    Walters, M.L., Dautenhahn, K., te Boekhorst, R., Koay, K.L., Woods, S., Nehaniv, C., Lee, D., Werry, I.: The influence of subjects’ personality traits on personal spatial zones in a human-robot interaction experiment. In: 14th International Workshop on Robots and Human Interactive Communication. RO-MAN, pp. 347–352 (2005)Google Scholar
  13. 13.
    Bailenson, J.N., Blascovich, J., Beall, A.C., Loomis, J.M.: Interpersonal distance in immersive virtual environments. Pers. Soc. Psychol. B. 29(7), 819–833 (2003)CrossRefGoogle Scholar
  14. 14.
    Blascovich, J., Loomis, J., Beall, A.C., Swinth, C.L., Bailenson, H., Bailenson, J.N.: Immersive virtual environment technology as a methodological tool for social psychology. Psychol. Inq. 13(2), 103–124 (2002)CrossRefGoogle Scholar
  15. 15.
    Olivier, A.H., Marin, A., Crétual, A., Pettré, J.: Minimal predicted distance: a common metric for collision avoidance during pairwise interactions between walkers. Gait Posture 36(3), 399–404 (2012)CrossRefGoogle Scholar
  16. 16.
    Wiltshire, T.J., Lobato, E.J., Wedell, A.V., Huang, W., Axelrod, B., Fiore, S.M.: Effects of Robot Gaze and Proxemic behavior on perceived social presence during a hallway navigation scenario. Proc. Hum. Factors Ergon. Soc. Ann. Meet. 57(1), 1273–1277 (2013)CrossRefGoogle Scholar
  17. 17.
    Pacchierotti, E., Christensen, H.I., Jensfelt, P.: Evaluations of distance for passage for a social robot. In: 15th Annual IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN06), pp. 315–320. IEEE Press, New York (2006)Google Scholar
  18. 18.
    Butler, J.T., Agah, A.: Psychological effects of behavior patterns of a mobile personal robot. Auton. Robot 10(2), 185–202 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kelley, J.F.: An iterative design methodology for user-friendly natural language office information applications. ACM T. Inform. Syst. 2(1), 26–41 (1984)Google Scholar
  20. 20.
    Schaefer, K.E.: Perception and measurement of human-robot trust. Doctoral dissertation. University of Central Florida Orlando, FL. http://etd.fcla.edu/CF/CFE0004931/Schaefer_Kristin_E_201308_PhD.pdf
  21. 21.
    Jian, J.Y., Bisantz, A.M., Drury, C.G., Llinas, J.: Foundations for an empirically determined scale of trust in automated systems (No. CMIF198). Air Force Research Laboraotory (1998). http://www.dtic.mil/get-tr-doc/pdf?AD=ADA395339
  22. 22.
    Jian, J.Y., Bisantz, A.M., Drury, C.G.: Foundations for an empirically determined scale of trust in automated systems. Int. J. Cogn. Ergon. 4(1), 53–71 (2000)Google Scholar
  23. 23.
    Forbes, A., Roger, D.: Stress, social support and fear of disclosure. Brith. J. Health. Psych. 4(2), 165–179 (1999)CrossRefGoogle Scholar
  24. 24.
    Nomura, T., Suzuki, T., Kanda, T., Kato, K.: Measurement of negative attitudes towards robots. Interact. Stud. 7(3), 437–454 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Keith R. MacArthur
    • 1
    Email author
  • Kimberly Stowers
    • 1
  • P. A. Hancock
    • 1
  1. 1.Department of PsychologyUniversity of Central FloridaOrlandoUSA

Personalised recommendations