Council, N.R.: Human-system integration in the system development process: a new look. The National Academies Press, Washington, DC (2007)
Google Scholar
Stikic, M., Johnson, R.R., Levendowski, D.J., Popovic, D.P., Olmstead, R.E., Berka, C.: EEG-derived estimators of present and future cognitive performance. Front Hum. Neurosci. 5 (2011)
Google Scholar
Shen, K.-Q., Li, X.-P., Ong, C.-J., Shao, S.-Y., Wilder-Smith, E.P.V.: EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate. Clin. Neurophysiol. 119, 1524–1533 (2008)
CrossRef
Google Scholar
Lin, C.-T., Wu, R.-C., Jung, T.-P., Liang, S.-F., Huang, T.-Y.: Estimating driving performance based on EEG spectrum analysis. EURASIP J. Appl. Signal Process. 3165–3174 (2005)
Google Scholar
Hosseini, S.A., Khalilzadeh, M.A., Changiz, S.: Emotional stress recognition system for affective computing based on bio-signals. J. Biol. Syst. 18, 101–114 (2010)
CrossRef
Google Scholar
Hope, R.M., Wang, Z., Wang, Z., Ji, Q., Gray, W.D.: Workload classification across subjects using EEG. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 55, 202–206 (2011)
Google Scholar
Wilson, G.F.: An analysis of mental workload in pilots during flight using multiple psychophysiological measures. Int. J. Aviat. Psychol. 12, 3–18 (2002)
CrossRef
Google Scholar
Kothe, C.A., Makeig, S.: Estimation of task workload from EEG data: new and current tools and perspectives. In: Presented at the Annual International Conference of the IEEE Engineering in Medicine and Biology Society 30 September 2011
Google Scholar
Duta, M., Alford, C., Wilson, S., Tarassenko, L.: Neural network analysis of the mastoid EEG for the assessment of vigilance. Int. J. Hum-Comput. Interact. 17, 171–195 (2004)
CrossRef
Google Scholar
Hord, D.J.: An EEG predictor of performance decrement in a vigilance task (1982)
Google Scholar
St John, M., Risser, M.R., Kobus, D.A.: Toward a usable closed-loop attention management system: predicting vigilance from minimal contact head, eye, and EEG measures. Found. Augment Cogn 12–18 (2006)
Google Scholar
Gerson, A.D., Parra, L.C., Sajda, P.: Cortically coupled computer vision for rapid image search. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 174–179 (2006)
Google Scholar
Marathe, A.R., Ries, A.J., McDowell, K.: Sliding HDCA: single-trial EEG classification to overcome and quantify temporal variability. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 201–211 (2014)
CrossRef
Google Scholar
Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of the state-of-the-art. Inf. Fusion. 14, 28–44 (2013)
CrossRef
Google Scholar
Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: IEEE International Conference on Computer Vision (ICCV 2011), IEEE, 1195–1202 (2011)
Google Scholar
Wu, S., Bondugula, S., Luisier, F., Zhuang, X., Natarajan, P.: Zero-shot event detection using multi-modal fusion of weakly supervised concepts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2665–2672 (2014)
Google Scholar
Kim, T., Lee, H., Lee, K.: Optical flow via locally adaptive fusion of complementary data costs. In: Proceedings of the IEEE International Conference on Computer Vision, 3344–3351 (2013)
Google Scholar
Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. Pattern Anal. Mach. Intell. IEEE. Trans. 33, 978–994 (2011)
Google Scholar
Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 325–339 (1967)
Google Scholar
Shafer, G., others: A mathematical theory of evidence. Princeton University Press Princeton (1976)
Google Scholar
Lee, H., Kwon, H., Robinson, R.M., Nothwang, W. d, Marathe, A.M.: Dynamic belief fusion for object detection. ArXiv Prepr. ArXiv151103183. (2015)
Google Scholar
Pascal, B., Krailsheimer, A.J.: Pensees: Translated with an introduction by AJ Krailsheimer. Penguin (1968)
Google Scholar
Bernoulli, D.: Exposition of a new theory on the measurement of risk. Econom. J. .Econom. Soc. 23–36 (1954)
Google Scholar
Lehmann, E.L.: Some principles of the theory of testing hypotheses. Springer (2012)
Google Scholar
Olson, E., Strom, J., Goeddel, R., Morton, R., Ranganathan, P., Richardson, A.: Exploration and mapping with autonomous robot teams. Commun ACM 56, 62–70 (2013)
CrossRef
Google Scholar
Tsiligkaridis, T., Sadler, B., Hero, A.: Collaborative 20 questions for target localization. IEEE Trans. Inf. Theory. 60, 2233–2252 (2014)
MathSciNet
CrossRef
Google Scholar
Christensen, J.C., Estepp, J.R., Wilson, G.F., Russell, C.A.: The effects of day-to-day variability of physiological data on operator functional state classification. NeuroImage 59, 57–63 (2012)
CrossRef
Google Scholar
Ratcliff, R., Philiastides, M.G., Sajda, P.: Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG. Proc. Natl. Acad. Sci. 106, 6539–6544 (2009)
CrossRef
Google Scholar
McDowell, K., Lin, C.-T., Oie, K.S., Jung, T.-P., Gordon, S., Whitaker, K.W., Li, S.-Y., Lu, S.-W., Hairston, W.D.: Real-world neuroimaging technologies. IEEE Access. 1, 131–149 (2013)
CrossRef
Google Scholar
Parasuraman, R., Wickens, C.D.: Humans: still vital after all these years of automation. Hum. Factors J. Hum. Factors Ergon. Soc. 50, 511–520 (2008)
Google Scholar
Fong, T., Thorpe, C., Baur, C.: Multi-robot remote driving with collaborative control. IEEE. Trans. Ind. Electron. 50, 699–704 (2003)
CrossRef
Google Scholar
Fong, T., Thorpe, C., Baur, C.: Robot, asker of questions. Robot. Auton. Syst. 42, 235–243 (2003)
CrossRef
MATH
Google Scholar
Hayati, S., Venkataraman, S.: Design and implementation of a robot control system with traded and shared control capability. In: IEEE International Conference on Robotics and Automation, IEEE 1310–1315 (1989)
Google Scholar
Sellner, B., Simmons, R., Singh, S.: User modelling for principled sliding autonomy in human-robot teams. In: Multi-Robot Systems. From Swarms to Intelligent Automata Vol. III, pp. 197–208. Springer (2005)
Google Scholar
Sajda, P., Pohlmeyer, E., Wang, J., Parra, L.C., Christoforou, C., Dmochowski, J., Hanna, B., Bahlmann, C., Singh, M.K., Chang, S.-F.: In a Blink of an eye and a switch of a transistor: cortically coupled computer vision. Proc. IEEE. 98, 462–478 (2010)
CrossRef
Google Scholar
Huang, Y., Erdogmus, D., Mathan, S., Pavel, M.: A Fusion approach for image triage using single trial erp detection. In: 3rd International IEEE/EMBS Conference on Neural Engineering CNE ’07, 473–476 (2007)
Google Scholar
Marathe, A.R., Lance, B.J., Nothwang, W., Metcalfe, J.S., McDowell, K.: Confidence metrics improve human-autonomy integration. In: Presented at the Human Robot Interaction, Bielefield, Germany 3 March 2014
Google Scholar
Marathe, A.R., Ries, A.J., Lawhern, V.J., Lance, B.J., Touryan, J., McDowell, K., Cecotti, H.: The effect of target and non-target similarity on neural classification performance: a boost from confidence. Front. Neurosci. 9, 270 (2015)
CrossRef
Google Scholar
Touryan, J., Apker, G., Kerick, S., Lance, B., Ries, A.J., McDowell, K.: Translation of EEG-based performance prediction models to rapid serial visual presentation tasks. In: Foundations of Augmented Cognition. 521–530. Springer (2013)
Google Scholar
Oie, K.S., Gordon, S.M., McDowell, K.: The multi-aspect measurement approach: rationale, technologies, tools, and challenges for systems design. In: Martin, J., Lockett, J.I., Allender, L.E., Savage-Knepshield, P. (eds.) Designing soldier systems: current issues in human factors. Ashgate, Burlington, VT (2013)
Google Scholar
Settles, B.: Active learning literature survey. Univ. Wis. Madison. 52, 11 (2010)
Google Scholar
Zhu, X.: Semi-supervised learning literature survey (2005)
Google Scholar
Joshi, A.J., Porikli, F., Papanikolopoulos, N.P.: Scalable active learning for multiclass image classification. Pattern Anal. Mach. Intell. IEEE. Trans. 34, 2259–2273 (2012)
Google Scholar
Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn Res. 2, 45–66 (2002)
MATH
Google Scholar
Marathe, A., Lawhern, V., Wu, D., Slayback, D., Lance, B.: Improved neural signal classification in a rapid serial visual presentation task using active learning. IEEE Trans. Neural Syst. Rehabil. Eng. 1–1 (2015)
Google Scholar
Wu, D., Lance, B.J., Parsons, T.D.: Collaborative filtering for brain-computer interaction using transfer learning and active class selection. PLoS ONE. 8, e56624 (2013)
CrossRef
Google Scholar
Wu, D., Lance, B., Lawhern, V.: Transfer learning and active transfer learning for reducing calibration data in single-trial classification of visually-evoked potentials. In: IEEE International Conference on Systems, Man and Cybernetics (SMC 2014), IEEE, 2801–2807 (2014)
Google Scholar
Gordon, S.M., McDaniel, J.R., Metcalfe, J.S., Passaro, A.D.: Using behavioral information to contextualize BCI performance. In: Foundations of Augmented Cognition. 211–220, Springer (2015)
Google Scholar
Metcalfe, J.S., Gordon, S.M., Passaro, A.D., Kellihan, B., Oie, K.S.: Towards a translational method for studying the influence of motivational and affective variables on performance during human-computer interactions. In: Foundations of Augmented Cognition. 63–72, Springer (2015)
Google Scholar