Advertisement

A Framework for Human-Agent Social Systems: The Role of Non-technical Factors in Operation Success

  • Monika LohaniEmail author
  • Charlene Stokes
  • Natalia Dashan
  • Marissa McCoy
  • Christopher A. Bailey
  • Susan E. Rivers
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 499)

Abstract

We present a comprehensive framework that identifies a number of factors that impact human-agent team building, including human, agent, and environmental factors. This framework integrates existing empirical work in organization behavior, non-technical training, and human-agent interaction to support successful human-agent operations. We conclude by discussing implications and next steps to evaluate and expand our framework with the aim of guiding future attempts to create efficient human-agent teams and improve mission outcomes.

Keywords

Social and emotional interaction Human factors Non-technical skills Operation success Human-Agent teams 

Notes

Acknowledgments

This work is funded by the Air Force Research Laboratory.

References

  1. 1.
    Jennings, N.R., Wooldridge, M.: Applications of intelligent agents. In: Jennings, N.R., Wooldridge, M.J. (eds.) Agent Technology, pp. 3–28. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Schaefer, K.E., Billings, D.R., Szalma, J.L., Adams, J.K., Sanders, T.L., Chen, J.Y., Hancock, P.A.: A Meta-Analysis of Factors Influencing the Development of Trust in Automation: Implications for Human-Robot Interaction (ARL-TR-6984). MD. US Army Research Laboratory, Aberdeen Proving Ground (2014)Google Scholar
  3. 3.
    Hancock, P.A., Billings, D.R., Schaefer, K.E., Chen, J.Y., De Visser, E.J., Parasuraman, R.: A meta-analysis of factors affecting trust in human-robot interaction: human factors. J. Hum. Factors Ergonomics Soc. 53, 517–527 (2011)CrossRefGoogle Scholar
  4. 4.
    Trafton, J.G., Cassimatis, N.L., Bugajska, M.D., Brock, D.P., Mintz, F.E., Schultz, A.C.: Enabling effective human-robot interaction using perspective-taking in robots. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 35, 460–470 (2005)CrossRefGoogle Scholar
  5. 5.
    Hoffman, G., Breazeal, C.: Cost-based anticipatory action selection for human-robot fluency. IEEE Trans. Robot. 23, 952–961 (2007)CrossRefGoogle Scholar
  6. 6.
    McGrath, J.E.: Leadership Behavior: Some Requirements for Leadership Training. U.S Civil Service Commission, Washington, D.C. (1962)Google Scholar
  7. 7.
    Breazeal, C.: Function meets style: insights from emotion theory applied to HRI. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 34, 187–194 (2004)CrossRefGoogle Scholar
  8. 8.
    Breazeal, C., Kidd, C.D., Thomaz, A.L., Hoffman, G., Berlin, M.: Effects of nonverbal communication on efficiency and robustness in human-robot teamwork. In: IEEE/RSJ international conference on intelligent robots and systems. pp. 708–713 (2005)Google Scholar
  9. 9.
    Breazeal, C.: Social interactions in HRI: the robot view. IEEE Trans. Syst. Man Cybernet. C Appl. Rev. 34, 181–186 (2004)CrossRefGoogle Scholar
  10. 10.
    Fong, T., Kunz, C., Hiatt, L.M., Bugajska, M.: The human-robot interaction operating system. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on human-robot interaction. pp. 41–48 (2006)Google Scholar
  11. 11.
    Flin, R., O’Connor., P., Mearns, K.: Crew resource management: improving teamwork in high reliability industries. Team Perform. Manag. Int. J. 8, 68–78 (2002)Google Scholar
  12. 12.
    Flin, R., Maran, N.: Identifying and training non-technical skills for teams in acute medicine. Qual. Saf. Health Care 13, i80–i84 (2004)CrossRefGoogle Scholar
  13. 13.
    Mathieu, J., Maynard, M.T., Rapp, T., Gilson, L.: Team effectiveness 1997–2007: a review of recent advancements and a glimpse into the future. J. Manag. 34, 410–476 (2008)Google Scholar
  14. 14.
    Andersen, P.O., Jensen, M.K., Lippert, A., Østergaard, D.: Identifying non-technical skills and barriers for improvement of teamwork in cardiac arrest teams. Resuscitation 81, 695–702 (2010)CrossRefGoogle Scholar
  15. 15.
    Buljac-Samardzic, M., Dekker-van Doorn, C.M., Van Winjingaarden, J.D., Van Wijk K.P.: interventions to improve team effectiveness: a systematic review. Health Policy. 94, 183–195 (2010)Google Scholar
  16. 16.
    Gratch, J., Wang, N., Gerten, J., Fast, E., Duffy, R.: Creating rapport with virtual agents. In: Pelachaud, C., Martin, J.C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) Intelligent Virtual Agents. LNAI, vol. 4722, pp. 125–128. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Gratch, J., Okhmatovskaia, A., Laomthe, F., Marsella, S., Morales, M., Van der Werf, R.J., Morency, L.P.: Virtual rapport. In: Gratch, J., Young, M., Aylett, R., Ballin, D., Olivier, P. (eds.) Intelligent Virtual Agents. LNAI, vol. 4133, pp. 14–27. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Gratch, J., Wang, N., Okhmatovskaia, A., Laomthe, F., Morales, M., Van der Werf, R.J., Morency, L.P.: Can virtual humans be more engaging than real ones? In: Jacko, J.A. (eds.) Human-Computer Interaction, HCI Intelligent Multimodal Interaction Environments, LNCS, vol. 4552, pp. 286–297. Springer, Heidelberg (2007)Google Scholar
  19. 19.
    Cassel, J., Thorisson, K.R.: The power of a nod and a glance: envelope vs. emotional feedback in animated conversational agents. Appl. Artif. Intell. 13, 519–538 (1999)CrossRefGoogle Scholar
  20. 20.
    Mutlu, B.: Designing embodied cues for dialog with robots. AI Magazine. 32, 17–30 (2011)Google Scholar
  21. 21.
    Sidner, C., Rich, C., Shayganfar, M., Bickmore, T., Ring, L., Zhang, Z.: A robotic companion for social support of isolated older adults. In: Proceedings of the tenth annual ACM/IEEE international conference on human-robot interaction extended abstracts. pp. 289–289 (2015)Google Scholar
  22. 22.
    Scheutz, M.: Evolution of affect and communication. In: Gökcay, D., Yildirim, G. (eds.) Affective Computing and Interaction: Psychological, Cognitive and Neuroscientific Perspectives, pp. 75–93. IGI Global, Hersey (2010)Google Scholar
  23. 23.
    Harbers, M., Jonker, C., Van Riemsdijk, B.: Enhancing team performance though effective communication. In: Proceedings of the 4th Annual Human-Agent-Robot Team Workshop, pp. 1–2. Boston (2012)Google Scholar
  24. 24.
    Hayes, B., Scassellati, B.: Challenges in shared-environment human-robot collaboration. Learning 8, 9–14 (2013)Google Scholar
  25. 25.
    Shah, J.A.: Fluid coordination of human-robot teams. Ph.D. Dissertation, Massachusetts Institute of Technology (2011)Google Scholar
  26. 26.
    Sebanz, N., Bekkering, H., Knoblich, G.: Joint action: bodies and minds moving together. Trends Cogn. Sci. 10, 70–76 (2006)CrossRefGoogle Scholar
  27. 27.
    Entin, E.E., Sefraty, D.: Adaptive team coordination. Human Factors J. Human Factors Ergonomics Soc. 41, 312–325 (1999)CrossRefGoogle Scholar
  28. 28.
    Traum, D., Marsella, S.C., Gratch, J., Lee, J., Hartholth, A.: Multi-party, multi-issue, multi-strategy negotiations for multi-modal virtual agents. In: Prendinger, H., Lester, J., Ishizuka, M. (eds.) Intelligent Virtual Agens. LNAI, vol. 5208, pp. 117–130. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Traum, D., Rickel, J., Gratch, J., Marsella, S.: Negotiation over tasks in hybrid human-agent teams for simulation-based training. In: Proceedings of the second international joint conference on autonomous agents and multi-agent systems, pp. 181–184. ACM, New York (2003)Google Scholar
  30. 30.
    Lohani., M., Stokes, C.K., McCoy, M., Bailey, C.A., Rivers, S.E.: Social interaction moderates human-robot trust-reliance relationship and improves stress coping. In: Proceedings of ACM/IEEE international conference on human-robot interaction (In Press)Google Scholar
  31. 31.
    Hoffman, G., Birnbaum, G.E., Vanunu, K., Sass, O., Reis, H.T.: Robot responsiveness to human disclosures affects social impression and appeal. In: Proceedings of the 2014 ACM/IEEE international conference on human-robot interaction, pp. 1–8 (2014)Google Scholar
  32. 32.
    Belpaeme, T., Baxter, P.E., Read, R., Wood, R., Cuaya´huitl, H., Kiefer, B., Humbert, R.: Multimodal child-robot interaction: building social bonds. J. Human-Robot Interact. 1, 33–53 (2012)Google Scholar
  33. 33.
    Dang, T.H.H., Tapus, A.: Coping with stress using social robots as emotion-orientated tool: potential factors discovered from stress game experiment. In: Hermann, G., Pearson, M.J., Lenz, A., Bremner, P., Spiers, A., Leonards, U. (eds.) Social Robots. LNAI, vol. 8239, pp. 160–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. 34.
    Heerink, M., Kröse, B., Evers., V., Wielinga., B.: The influence of a robot’s social abilities on acceptance by elderly users. In: The 15th IEEE international symposium on robot and human interactive communication. pp. 521–526 (2006)Google Scholar
  35. 35.
    Lohani., M., Stokes, C.K., McCoy, M., Bailey, C.A., Joshi, A., Rivers, S.E.: Perceived role of physiological sensors impacts trust and reliance on robots. In: IEEE international symposium on robot and human interactive communication (In Review)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Monika Lohani
    • 1
    Email author
  • Charlene Stokes
    • 1
    • 2
  • Natalia Dashan
    • 1
  • Marissa McCoy
    • 1
  • Christopher A. Bailey
    • 1
  • Susan E. Rivers
    • 1
  1. 1.Department of PsychologyYale UniversityNew HavenUSA
  2. 2.Air Force Research LaboratoryWright-Patterson Air Force BaseDaytonUSA

Personalised recommendations