Skip to main content

Advanced Application of Natural Polysaccharides

  • Chapter
  • First Online:
  • 767 Accesses

Abstract

One of major contributing factor in the development of biomedical research are the number of researches carried out for the advancement of polymeric materials with their advance drug delivery systems to explore their potential applications in the similar area. This chapter has covered some of the recent hot topics of polymeric science directing its prospects towards biomedical sector.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shalaby SW, Burg KJL, editors. Absorbable and biodegradable polymers (advances in polymeric materials). Boca Raton: CRC press; 2003.

    Google Scholar 

  2. Domb AJ, Wiseman DM, editors. Handbook of biodegradable polymers. Boca Raton: CRC Press; 1998.

    Google Scholar 

  3. Piskin E. Biodegradable polymers as biomaterials. J Biomat Sci Polym Ed. 1995;6:775–95.

    Article  CAS  Google Scholar 

  4. Barbucci R, editor. Integrated biomaterial science. New York: Kluwer Academic/Plenum; 2002.

    Google Scholar 

  5. Williams DF. The Williams dictionary of biomaterials. Liverpool: Liverpool University Press; 1999.

    Google Scholar 

  6. Lloyd AW. Interfacial bioengineering to enhance surface biocompatibility. Med Device Technol. 2002;13:18–21.

    Google Scholar 

  7. Vert M. Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules. 2005;6:538–46.

    Article  CAS  Google Scholar 

  8. Katti DS, Lakshmi S, Langer R, Laurencin CT. Toxicity, biodegradation and elimination of poly anhydrides. Adv Drug Deliv Rev. 2002;54:933–61.

    Article  CAS  Google Scholar 

  9. Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res. 1999;48:342–53.

    Article  CAS  Google Scholar 

  10. Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006;31:576–602.

    Article  CAS  Google Scholar 

  11. Rodriguez-Cabello JC, Reguera J, Girotti A, Alonso M, Testera AM. Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach. Prog Polym Sci. 2005;30:1119–45.

    Article  Google Scholar 

  12. Guo XD, Zheng QX, Du JY, Yang SH, Wang H, Shao ZW, Sun EJ. Molecular tissue engineering: concepts, status and challenge. J Wuhan Univ Technol. 2002;17:30–4.

    CAS  Google Scholar 

  13. Uludag H, Vos PD, Tresco PA. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev. 2000;42:29–64.

    Article  CAS  Google Scholar 

  14. Mogos GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharmaceutics. 2014;463:127–36.

    Article  Google Scholar 

  15. Giusti P, Lazzeri L, Lelli L. Bioartificial polymeric materials: a new method to design biomaterials by using both biological and synthetic polymers. TRIP. 1993;1:261–7.

    CAS  Google Scholar 

  16. Giusti P, Lazzeri L, Petris S, Palla M, Cascone MG. Collagen based new bioartificial polymeric materials. Biomaterials. 1994;15:1229–33.

    Article  CAS  Google Scholar 

  17. Cascone MG. Dynamic–mechanical properties of bioartificial polymeric materials. Polym Int. 1997;43:55–69.

    Article  CAS  Google Scholar 

  18. Werkmeister JA, Edwards GA, Casagranda F, White JF, Ramshaw JAM. Evaluation of a collagen-based biosynthetic materials for the repair of abdominal wall defects. J Biomed Mater Res. 1998;39:429–36.

    Article  CAS  Google Scholar 

  19. Suh JKF, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomater. 2000;21:2589–98.

    Article  CAS  Google Scholar 

  20. Leclerc E, Furukawa KS, Miyata F, Sakai Y, Ushida T, Fujii T. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. Biomaterials. 2004;25:4683–90.

    Article  CAS  Google Scholar 

  21. Sionkowska A. Interaction of collagen and poly(vinyl pyrrolidone)in blends. Eur Polym J. 2003;39:2135–40.

    Article  CAS  Google Scholar 

  22. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ. Molecular interactions in collagen and chitosan blends. Biomaterials. 2004;25:795–801.

    Article  CAS  Google Scholar 

  23. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ. The photochemical stability of collagen–chitosan blends. J Photochem Photobiol A. 2004;162:545–54.

    Article  CAS  Google Scholar 

  24. Sionkowska A, Kaczmarek H, Kowalonek J, Wisniewski M, Skopinska J. Surface state of UV irradiated collagen/PVP blends. Surf Sci. 2004;566–568:608–12.

    Article  Google Scholar 

  25. Sionkowska A, Wisniewski M, Skopinska J. Photochemical stability of collagen/poly (vinyl alcohol) blends. Polym Degrad Stab. 2004;83:117–25.

    Article  CAS  Google Scholar 

  26. Sionkowska A, Kaczmarek H, Wisniewski M, El-Feninat F, Mantovani D. Ultraviolet irradiation of synthetic polymer/collagen blends: preliminary results of atomic force microscopy. In: Mantovani D, editor. Advanced materials for biomedical applications. Quebec: Canadian Institute of Mining, Metallurgy and Petroleum; 2002. p. 27–40.

    Google Scholar 

  27. Deng C, Zhang P, Vulesevic B, Kuraitis D, Li F, Yang AF, Griffith M, Suuronen EJ. A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng Part A. 2010;16:3099–109.

    Article  CAS  Google Scholar 

  28. Wang X, Sang L, Luo D, Li X. From collagen–chitosan blends to three-dimensional scaffolds: the influences of chitosan on collagen nanofibrillar structure and mechanical property. Colloids Surf B Biointerfaces. 2011;82:233–40.

    Article  CAS  Google Scholar 

  29. Bailey AJ, Paul RG. Collagen—is not so simple protein. J Soc Leather Technol Chem. 1998;82:104–8.

    CAS  Google Scholar 

  30. Orgel JP, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ. The in situ supermolecular structure of type I collagen. Structure. 2001;9:1061–9.

    Article  CAS  Google Scholar 

  31. Orgel JP, San Antonio JD, Antipova O. Molecular and structural mapping of collagen fibril interactions. Connect Tissue Res. 2011;52:2–17.

    Article  CAS  Google Scholar 

  32. Usha R, Ramasami T. Structure and conformation of intramolecularly cross-linked collagen. Colloids Surf B Biointerfaces. 2005;41:21–4.

    Article  CAS  Google Scholar 

  33. Nishi Y, Doi M, Doi S, Nishiuchi Y, Nakazawa T, Ohkubo T, Kobayashi Y. Stabilization mechanism of triple helical structure of collagen molecules. Int J Pept Res Ther. 2003;10:533–7.

    Article  CAS  Google Scholar 

  34. Behring J, Junker R, Walboomers XF, Chessnut B, Jansen JA. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology. 2008;96:1–11.

    Article  CAS  Google Scholar 

  35. Fischbach C, Tessmar J, Lucke A, Schnell E, Schmeer G, Blunk T. Does UV irradiation affect polymer properties relevant to tissue engineering? Surf Sci. 2001;491:333–45.

    Article  CAS  Google Scholar 

  36. Sionkowska A. Photochemical stability of collagen/poly(ethylene oxide) blends. J Photochem Photobiol A. 2006;177:61–7.

    Article  CAS  Google Scholar 

  37. Sionkowska A. The influence of UV light on collagen/poly(ethylene glycol) blends. Polym Degrad Stab. 2006;91:305–12.

    Article  CAS  Google Scholar 

  38. Sionkowska A, Wisniewski M, Kaczmarek H, Skopinska J, ChevallierP MD, Lazare S, Tokarev V. The influence of UV irradiation on surface composition of collagen/PVP blended films. Appl Surf Sci. 2006;253:1970–7.

    Article  CAS  Google Scholar 

  39. Struszczyk MH. Chitin and chitosan. Part II. Applications of chitosan. Polimery. 2002;47:396–403.

    Google Scholar 

  40. Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, GazzanelliG VV. Biological activity of chitosan: ultrastructural study. Biomaterials. 1988;9:247–52.

    Article  CAS  Google Scholar 

  41. Majeti N, Kumar R. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.

    Article  Google Scholar 

  42. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32.

    Article  CAS  Google Scholar 

  43. Terbojevich M, Cosani A, Conio G, Marsano E, Bianchi E. Chitosan: chain rigidity and mesophase formation. Carbohydr Res. 1991;209:251–60.

    Article  CAS  Google Scholar 

  44. Gerrit B. Chitosans for gene delivery. Adv Drug Deliv Rev. 2001;52:145–50.

    Article  Google Scholar 

  45. Chunmeng S, Ying Z, Xinze R, Meng W, Yongping S, Tianmin C. Therapeuticpotentialofchitosananditsderivativesinregenerativemedicine. J Surg Res. 2006;133:185–92.

    Article  Google Scholar 

  46. Dyksterhuis LB, Baldock C, Lammie D, Wess TJ, Weiss AS. A turning point in elastin structure. Matrix Biol. 2006;25:S17.

    Article  Google Scholar 

  47. Samouillan V, Dandurand J, Lacabanne C, Hornebeck W. Molecular mobility of elastin: effect of molecular architecture. Biomacromolecules. 2002;3:531–7.

    Article  CAS  Google Scholar 

  48. Bonzon N, Carrat X, Daminiere C, Daculsi G, Lefebvre F, Rabaud M. New artificial connective matrix made of fibrin monomers, elastin peptides and type I + III collagens: structural study, biocompatibility and use as tympanic membranes in rabbit. Biomaterials. 1995;16:881–5.

    Google Scholar 

  49. Klein B, Schiffer R, Hafemann B, Klosterhalfen B, Zwadlo-Klarwasser G. Inflammatory response to a porcine membrane composed of fibrous collagen and elastin as dermal substitute. J Mater Sci Mater Med. 2001;12:419–24.

    Article  CAS  Google Scholar 

  50. Mithieux SM, Rasko JE, Weiss AS. Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials. 2004;25:4921–7.

    Article  CAS  Google Scholar 

  51. Skopinska-Wisniewska J, Sionkowska A, Kaminska A, KaznicaA JR, Drewa T. Surface properties of collagen/elastin based biomaterials for tissue regeneration. Appl Surf Sci. 2009;225:8286–92.

    Article  Google Scholar 

  52. Debelle L, Alix AJP. The structures of elastins and their function. Biochimie. 1999;81:981–94.

    Google Scholar 

  53. Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1:161–76.

    Article  Google Scholar 

  54. Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol. 2015;81:317–31.

    Article  CAS  Google Scholar 

  55. Choi C, Nam JP, Nah JW, Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2014;64:353–67.

    Article  Google Scholar 

  56. Choi C, Nam J-P, Nah J-W. Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem. 2016;33:1–10.

    Article  CAS  Google Scholar 

  57. Reed RK, Lilja K, Laurent TC. Hyaluronan in the rat with special reference to the skin. Acta Physiol Scand. 1988;134:405–11.

    Article  CAS  Google Scholar 

  58. Neuman MG, Nanau RM, Oruna-Sanchez L, Coto G. Hyaluronic acid and wound healing. J Pharm Pharm Sci. 2015;18:53–60.

    Article  Google Scholar 

  59. Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol. 2001;12:79–87.

    Article  CAS  Google Scholar 

  60. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85:699–715.

    Article  CAS  Google Scholar 

  61. Stern R. Association between cancer and “acid mucopolysaccharides”: an old concept comes of age, finally. Semin Cancer Biol. 2008;18:238–43.

    Article  CAS  Google Scholar 

  62. Laurent TC. The chemistry, biology and medical applications of hyaluronan and its derivatives. London: Portland Press; 1998.

    Google Scholar 

  63. Laurent TC, Fraser JRE. Hyaluronan. FASEB J. 1992;6:2397–404.

    CAS  Google Scholar 

  64. Underhill C. CD44: the hyaluronan receptor. J Cell Sci. 1992;103:293–8.

    CAS  Google Scholar 

  65. SneathRJS MDC. The normal structure and function of CD44 and its role in neoplasia. Mol Pathol. 1998;51:191–200.

    Google Scholar 

  66. Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev. 2016;97:204–36. doi:10.1016/j.addr.2015.11.011.

    Article  CAS  Google Scholar 

  67. Zhao L, Liu M, Wang J, Zhai G. Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydr Polym. 2015;133:391–9.

    Article  CAS  Google Scholar 

  68. Cordeiro AS, Alonso MJ, Fuente M. Nanoengineering of vaccines using natural polysaccharides. Biotechnol Adv. 2015;33:1279–93.

    Article  CAS  Google Scholar 

  69. Medical Device and Diagnostic Industry. 2005. http://www.devicelink.com/mddi/archive/05/05/024.htmlS.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatia, S. (2016). Advanced Application of Natural Polysaccharides. In: Systems for Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-41926-8_5

Download citation

Publish with us

Policies and ethics