Skip to main content

Microbial Polysaccharides as Advance Nanomaterials

  • Chapter
  • First Online:

Abstract

The microorganisms offer great amounts of polysaccharides in the presence of additional carbon source. Certain polysaccharides serve as storage compounds. The polysaccharides excreted by the cells, called as exopolysaccharides, are of industrial importance. The exopolysaccharides may be reported in association with the cells or may remain in the medium. The microbial polysaccharides may be neutral (e.g. dextran, scleroglucan) or acidic (xanthan, gellan) in nature. Acidic polysaccharides possessing ionized groups such as carboxyl, which can function as polyelectrolytes, are commercially more important. These emerging microbial polysaccharides are recently explored as nano-materials for diverse biomedical applications. This chapter emphasize on nano-applications of microbial polysaccharides in diverse discipline of biomedical science.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xua W, Jina W, Lia Z, Lianga H, Wanga Y, Shaha BR, Lia Y, Lia B. Synthesis and characterization of nanoparticles based on negatively charged xanthan gum and lysozyme. Food Res Int. 2015;71:83–90.

    Article  Google Scholar 

  2. Kennedya JRM, Kent KE, Brown JR. Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles. Mater Sci Eng C. 2015;48:347–53.

    Article  Google Scholar 

  3. Sharma N, Deshpande RD, Sharma D, Sharma RK. Development of locust bean gum and xanthan gum based biodegradable microparticles of celecoxib using a central composite design and its evaluation original research article. Ind Crops Prod. 2016;82:161–70.

    Article  CAS  Google Scholar 

  4. Kim J, Hwang J, Kang H, Choi J. Chlorhexidine-loaded xanthan gum-based biopolymers for targeted, sustained release of antiseptic agent. J Ind Eng Chem. 2015;32:44–8.

    Article  CAS  Google Scholar 

  5. Manca ML, et al. Liposomes coated with Chitosan–Xanthan Gum (Chitosomes) as potential carriers for pulmonary delivery of rifampicin. J Pharm Sci. 2012;101(2):566–75.

    Article  CAS  Google Scholar 

  6. Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY. Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydr Polym. 2010;79(4):898–907.

    Article  CAS  Google Scholar 

  7. Koop HS, Freitas RA, Souza MM, Roberto SJ, Silveira JLM. Topical curcumin-loaded hydrogels obtained using galactomannan from Schizolobium parahybae and xanthan original research article. Carbohydr Polym. 2015;116:229–36.

    Article  CAS  Google Scholar 

  8. Nichifor M, et al. Aggregation in water of dextran hydrophobically modified with bile acids. Macromolecules. 1999;32:7078–85.

    Article  CAS  Google Scholar 

  9. Walker S, et al. Cationic facial amphiphiles: a promising class of transfection agents. Proc Natl Acad Sci U S A. 1996;93:1585–90.

    Article  CAS  Google Scholar 

  10. Alheim M, Hallensleben ML. Radikalisch polymerisierbaregallensa ¨uren in monoschichten, mizellen and vesikeln. Makromol Chem. 1992;193:779–97.

    Article  Google Scholar 

  11. Denike JK, Zhu XX. Preparation of new polymers from bile acid derivatives. Macromol Rapid Commun. 1994;15:459–65.

    Article  CAS  Google Scholar 

  12. Harboe E, Larsen C, Johansen M, Olesen HP. Macromolecular prodrugs. XV. Colon-targeted delivery–bioavailability of naproxen from orally administered dextran-naproxen ester prodrugs varying in molecular size in the pig. Pharm Res. 1989;6:919–23.

    Google Scholar 

  13. Cakić M, Glišić S, Nikolić G, Nikolić GM, Cakić K, Cvetinov M. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles. J Mol Struct. 2016;1110:156–61.

    Article  Google Scholar 

  14. Wu ZL, Shi G, Ni C. Zwitterionic pH/redox nanoparticles based on dextran as drug carriers for enhancing tumor intercellular uptake of doxorubicin. Mater Sci Eng C. 2016;61:278–85.

    Article  CAS  Google Scholar 

  15. Kiruthika V, Maya S, Suresh MK, Kumar VA, Jayakumar R, Biswas R. Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections. Colloids Surf B Biointerfaces. 2015;127:33–40.

    Article  CAS  Google Scholar 

  16. Valente JFA, Gaspar VM, Antunes BP, Countinho P, Correia IJ. Microencapsulated chitosan–dextran sulfate nanoparticles for controlled delivery of bioactive molecules and cells in bone regeneration. Polymer. 2013;54(1):5–15.

    Google Scholar 

  17. Sharma S, Mukkur TKS, Benson HAE, Chen Y. Enhanced immune response against pertussis toxoid by IgA-loaded Chitosan–Dextran sulfate nanoparticles. J Pharm Sci. 2012;101(1):233–44.

    Article  CAS  Google Scholar 

  18. Jang H, Ryoo SR, Kostarelos K, Han SW, Min DH. The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials. 2013;34(13):3503–10.

    Article  CAS  Google Scholar 

  19. You DG, et al. Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging. Carbohydr Polym. 2014;101:1225–33.

    Article  CAS  Google Scholar 

  20. Huang CF, Yao GH, Liang RP, Qiu JD. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosen Bioelectron. 2013;50:305–10.

    Article  CAS  Google Scholar 

  21. Li M, Tang Z, Zhang Y, Lv S, Li Q, Chen X. Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomater. 2015;18:132–43.

    Article  CAS  Google Scholar 

  22. Qi J, Yao P, He F, Yu C, Huang C. Nanoparticles with dextran/chitosan shell and BSA/chitosan core—Doxorubicin loading and delivery. Int J Pharm. 2010;393:1–2. 177-185.

    Article  Google Scholar 

  23. Choi KC, et al. Antitumor effect of adriamycin-encapsulated nanoparticles of poly(DL-lactide-co-glycolide)-grafted dextran. J Pharm Sci. 2009;98(6):2104–12.

    Article  CAS  Google Scholar 

  24. Prado HJ, Matulewicz MC. Cationization of polysaccharides: a path to greener derivatives with many industrial applications. Eur Polym J. 2014;52:53–75.

    Article  CAS  Google Scholar 

  25. Zhang P, Zhao SR, Li JX, Hong L, Raja MA, Yu LJ, Liu CG. Nanoparticles based on phenylalanine ethyl ester-alginate conjugate as vitamin B2 delivery system. J Biomater Appl. 2016.

    Google Scholar 

  26. Dey S, Sherly MC, Rekha MR, Sreenivasan K. Alginate stabilized gold nanoparticle as multidrug carrier: evaluation of cellular interactions and hemolytic potential. Carbohydr Polym. 2016;136:71–80.

    Article  CAS  Google Scholar 

  27. Khampieng T, Aramwit P, Supaphol P. Silk sericin loaded alginate nanoparticles: preparation and anti-inflammatory efficacy. Int J Biol Macromol. 2015;80:636–43.

    Article  CAS  Google Scholar 

  28. Eghbalifam N, Frounchi M, Dadbin S. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation. Int J Biol Macromol. 2015;80:170–6.

    Article  CAS  Google Scholar 

  29. Kolya H, Pal S, Pandey A, Tripathy T. Preparation of gold nanoparticles by a novel biodegradable graft copolymer sodium alginate-g-poly (N, N-dimethylacrylamide-co-acrylic acid) with anti micro bacterial application. Eur Polym J. 2015;66:139–48.

    Article  CAS  Google Scholar 

  30. Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol. 2015;72:640–8.

    Article  CAS  Google Scholar 

  31. Wu JL, Wang CQ, Zhuo RX, Cheng SX. Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloids Surf B Biointerfaces. 2014;123:498–505.

    Article  CAS  Google Scholar 

  32. Rahaiee S, Shojaosadati SA, Hashemi M, Moini S, Razavi SH. Improvement of crocin stability by biodegradable nanoparticles of chitosan-alginate. Int J Biol Macromol. 2015;79:423–32.

    Google Scholar 

  33. Matsumoto T, Numata M, Anada T, Mizu M, Koumoto K, Sakurai K, et al. Chemically modified polysaccharide schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake efficiency. Biochim Biophys Acta. 2004;1670:91–104.

    Article  CAS  Google Scholar 

  34. Takedatsu H, Mitsuyama K, Mochizuki S, Kobayashi T, Sakurai K, Takeda H, et al. A new therapeutic approach using a schizophyllan-based drug delivery system for inflammatory bowel disease. Mol Ther. 2012;20(6):1234–41.

    Article  CAS  Google Scholar 

  35. François NJ, Allo S, Jacobo SE, Daraio ME. Composites of polymeric gels and magnetic nanoparticles: preparation and drug release behavior. J Appl Polym Sci. 2007;105:647–55.

    Article  Google Scholar 

  36. Filpo GD, et al. Gellan gum/titanium dioxide nanoparticle hybrid hydrogels for the cleaning and disinfection of parchment. Int Biodeter Biodegr. 2015;103:51–8.

    Article  Google Scholar 

  37. Duan Y, Cai X, Du H, Zhai G. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces. 2015;128:322–30.

    Article  CAS  Google Scholar 

  38. Kundu P, Datta R, Maiti S. Hexadecyl gellan amphiphilic nanoparticles: physicochemical properties and in vivo lipid-lowering potential. J Drug Deliv Sci Technol. 2015;27:9–17.

    Article  CAS  Google Scholar 

  39. Pacelli S, et al. Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur Polym J. 2016;77:114–23.

    Article  CAS  Google Scholar 

  40. Wang X, Zhao C, Zhao P, Dou P, Ding Y, Xu P. Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system. Bioresour Technol. 2009;100(7):2301–4.

    Article  CAS  Google Scholar 

  41. Goyal R, et al. Gellan gum blended PEI nanocomposites as gene delivery agents: evidences from in vitro and in vivo studies. Eur J Pharm Biopharm. 2011;79(1):3–14.

    Article  CAS  Google Scholar 

  42. Kang D, Zhang F, Zhang H. Fabrication of stable aqueous dispersions of graphene using gellan gum as a reducing and stabilizing agent and its nanohybrids. Mater Chem Phys. 2015;149–150:129–39.

    Article  Google Scholar 

  43. Novac O, Lisa G, Profire L, Tuchilus C, Popa MI. Antibacterial quaternized gellan gum based particles for controlled release of ciprofloxacin with potential dermal applications. Mater Sci Eng C. 2014;35:291–9.

    Article  CAS  Google Scholar 

  44. Akiyoshi K, et al. Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules. 1993;26:3062–8.

    Article  CAS  Google Scholar 

  45. Akiyoshi K, et al. Supramolecular assembly of hydrophobized polysaccharides. Supramol Sci. 1996;3:157–63.

    Article  CAS  Google Scholar 

  46. Akiyoshi K, et al. Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules. 1997;30:857–61.

    Article  CAS  Google Scholar 

  47. Eslaminejad T, Nematollahi-Mahani SN, Ansari M. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan–spermine magnetic nanoparticles. J Magnetism Magnetic Mater. 2016;402:34–43.

    Article  CAS  Google Scholar 

  48. Zhang C, et al. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(β-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J Control Release. 2016;226:193–204.

    Article  CAS  Google Scholar 

  49. Dionísio M, Cordeiro C, Remuñán-López C, Seijo B, Rosa CAM, Grenha A. Pullulan-based nanoparticles as carriers for transmucosal protein delivery. Eur J Pharm Sci. 2013;50(1):102–13.

    Article  Google Scholar 

  50. Kanmani P, Lim ST. Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr Polym. 2013;97(2):421–8.

    Article  CAS  Google Scholar 

  51. Ganeshkumar M, Ponrasu T, Raja MD, Subamekala MK, Suguna L. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochim Acta A Mol Biomol Spectrosc. 2014;130:64–71.

    Article  CAS  Google Scholar 

  52. Guo H, Liu Y, Wang Y, Wu J, Yang X, Li R, Wang Y, Zhang N. pH-sensitive pullulan-based nanoparticle carrier for adriamycin to overcome drug-resistance of cancer cells. Carbohydr Polym. 2014;111:908–17.

    Article  CAS  Google Scholar 

  53. Wang Y, Chen H, Liu Y, Wu J, Zhou P, Wang Y, Li R, Yang X, Zhang N. pH-sensitive pullulan-based nanoparticle carrier of methotrexate and combretastatin A4 for the combination therapy against hepatocellular carcinoma. Biomaterials. 2013;34(29):7181–90.

    Article  CAS  Google Scholar 

  54. Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y. Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. J Control Release. 2002;83:287–302.

    Article  CAS  Google Scholar 

  55. Constantin M, Oanea I, Harabagiu V, Ascenzi P, Fundueanu G. DNA complexation by cationic pullulan possessing thermo-sensitive units. Digest J Nanomater Biostruct. 2011;6:849–61.

    Google Scholar 

  56. Thomsen LB, Lichota J, Kim KS, Moos T. Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion. J Control Release. 2011;151:45–50.

    Article  CAS  Google Scholar 

  57. Thakor DK, Teng YD, Tabata Y. Neuronal gene delivery by negatively charged –spermine pullulan–spermine/DNA anioplexes. Biomaterials. 2009;30:1815–26.

    Article  CAS  Google Scholar 

  58. Rekha MR, Sharma CP. Blood compatibility and in vitro transfection studies on cationically modified pullulan for liver cell targeted gene delivery. Biomaterials. 2009;30:6655–64.

    Article  CAS  Google Scholar 

  59. Rekha MR, Sharma CP. Hemocompatible pullulan–polyethylene imine conjugates for liver cell gene delivery: in vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency. Acta Biomater. 2011;7:370–9.

    Article  CAS  Google Scholar 

  60. Wu Y, Cai J, Han J, Baigude H. Cell type-specific delivery of RNAi by ligand-functionalized Curdlan nanoparticles: balancing the receptor mediation and the charge motivation. ACS Appl Mater Interfaces. 2015;7(38):21521–8.

    Article  CAS  Google Scholar 

  61. Tukulula M, Hayeshi R, Fonteh P, Meyer D, Ndamase A, Madziva MT, Khumalo V, Labuschagne P, Naicker B, Swai H, Dube A. Erratum to: Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities. Pharm Res. 2015;32(8):2713–26.

    CAS  Google Scholar 

  62. Yan JK, Liu JL, Sun YJ, Tang S, Mo ZY, Liu YS. Green synthesis of biocompatible carboxylic curdlan-capped gold nanoparticles and its interaction with protein. Carbohydr Polym. 2015;6(117):771–7.

    Article  Google Scholar 

  63. Yan JK, Ma HL, Chen X, Pei JJ, Wang ZB, Wu JY. Self-aggregated nanoparticles of carboxylic curdlan-deoxycholic acid conjugates as a carrier of doxorubicin. Int J Biol Macromol. 2015;72:333–40.

    Article  CAS  Google Scholar 

  64. Han J, Cai J, Borjihan W, Ganbold T, Rana TM, Baigude H. Preparation of novel curdlan nanoparticles for intracellular siRNA delivery. Carbohydr Polym. 2015;117:324–30.

    Article  CAS  Google Scholar 

  65. Wu J, Zhang F, Zhang H. Facile synthesis of carboxymethyl curdlan-capped silver nanoparticles and their application in SERS. Carbohydr Polym. 2012;90(1):261–9.

    Article  Google Scholar 

  66. Li L, Gao FP, Tang HB, Bai YG, Li RF, Li XM, Liu LR, Wang YS, Zhang QQ. Self-assembled nanoparticles of cholesterol-conjugated carboxymethyl curdlan as a novel carrier of epirubicin. Nanotechnology. 2010;21(26):265601.

    Article  Google Scholar 

  67. Na K, Park KH, Kim SW, Bae YH. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release. 2000;69(2):225–36.

    Article  CAS  Google Scholar 

  68. Bondarenkoa OM, et al. Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nanoparticles. Carbohydr Polym. 2016;136:710–20.

    Article  Google Scholar 

  69. Baird JK, Sandford PA, Cottrell IW. Industrial applications of some new microbial polysaccharides. Nat Biotech. 1983;1:778–83.

    Article  CAS  Google Scholar 

  70. Matricardi P, Cencetti C, Ria R, Alhaique F, Coviello T. Preparation and characterization of novel gellan gum hydrogels suitable for modified drug release. Molecules. 2009;14:3376–91.

    Article  CAS  Google Scholar 

  71. Maiti S, Ranjit S, Mondol R, Ray S, Sa B. Al3+ ion cross-linked and acetylated gellan hydrogel network beads for prolonged release of glipizide. Carbohydr Polym. 2011;85:164–72.

    Google Scholar 

  72. Patil S, Sharma S, Nimbalka A, Pawar A. Study of formulation variables on properties of drug-gellan beads by factorial design. Drug Dev Ind Pharm. 2006;32:315–26.

    Article  CAS  Google Scholar 

  73. Coviello T, Dentini M, Rambone G, Desideri P, Carafa M, Murtas E, Riccieri FM, Alhaique F. A novel co-crosslinked polysaccharide: studies for a controlled delivery. J Control Release. 1998;55:57–66.

    Article  CAS  Google Scholar 

  74. Coviello T, Grassi M, Rambone G, Alhaique F. A crosslinked system from scleroglucan derivate: preparation and characterization. Biomaterials. 2001;22:1899–909.

    Article  CAS  Google Scholar 

  75. Coviello T, Grassi M, Rambone G, Santucci E, Carafa M, Murtas E, Riccieri FM, Alhaique F. Novel hydrogels system from scleroglucan: synthesis and characterization. J Control Release. 1999;60:367–78.

    Article  CAS  Google Scholar 

  76. Thimma RT, Tammishetti S. Barium chloride cross-linked carboxymethyl guar gum beads for gastrointestinal drug delivery. J Appl Polym Sci. 2001;82:3084–90.

    Article  CAS  Google Scholar 

  77. Bejenariu A, Popa M, Dulong V, Picton L, Cerf D. Trisodium trimetaphosphate cross-linked xanthan networks: synthesis, swelling, loading and releasing behavior. Polym Bull. 2009;62:525–38.

    Article  CAS  Google Scholar 

  78. Reddy T, Tammishetti S. Gastric resistant microbeads of metal ion cross-linked carboxymethyl guar gum for oral drug delivery. J Microencapsul. 2002;19:311–8.

    Article  CAS  Google Scholar 

  79. Taba MO, Nasser W, Ardakani A, Alkhatib HS. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles. Int J Pharm. 2008;250:291–300.

    Google Scholar 

  80. Singh V, Kumar P, Sanghi R. Use of microwave irradiation in the grafting modification of the polysaccharides—a review. Prog Polym Sci. 2012;37:340–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatia, S. (2016). Microbial Polysaccharides as Advance Nanomaterials. In: Systems for Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-41926-8_2

Download citation

Publish with us

Policies and ethics