Skip to main content

Projections of Changes in Flood Hazard in Two Headwater Catchments of the Vistula in the Context of European-Scale Studies

Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)

Abstract

European-scale flood hazard projections do not give a consistent view of future changes in Central Europe, including Poland. Some studies indicate decreases in the magnitude and frequency of high flows, whilst others show increases. In this chapter, we summarize the current state of knowledge on flood perspectives in Central Europe and Poland under future climatic conditions at the background of large-scale European flood hazard projections and we contrast it with a small-scale study. Projections of changes in flood hazard in two catchments are considered in a multi-scale perspective, and against a background of large-scale: global and European projections, through regional (Central Europe) and national, to local. A discussion on causes of differences in flood-hazard projections and their possible interpretation is included. Among other issues, the uncertainties related to the processes taking part in the computational chain leading to the derivation of projections are listed. Specifically, the possible changes in the 30-year and 100-year return period quantiles of the maximum annual flows in the Dunajec and the Upper Wisla basins, two headwater catchments in the Vistula Basin are presented. The analysis is based on seven driving GCM/RCM projections under the RCP4.5 scenario. The results for both catchments are consistent with some of the previous European-scale studies, but do not give a coherent image. At this stage, the only explanation of the differences in the projections of future flood changes in both catchments lies in climatic variability and the uncertainty of the results. The results of this study confirm the view that flood hazard assessment is influenced by multiple climatic and non-climatic factors which introduce uncertainties and whose relative importance is site-specific.

Keywords

  • Flood hazard
  • Projections
  • Uncertainty
  • River Vistula
  • Poland

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-41923-7_17
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-41923-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alfieri L et al (2015) Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst Sci 19:2247–2260, www.hydrol-earth-syst-sci.net/19/2247/2015/

    Google Scholar 

  • Arnell NW, Gosling SN (2016) The impacts of climate change on river flood risk at the global scale. Climatic Change 1–15. doi:10.1007/s10584-014-1084-5

    Google Scholar 

  • Bergström S (1995) The HBV model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, CO, pp 443–476

    Google Scholar 

  • Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richel R (2007) CCSP scenarios of greenhouse house gas emissions and atmospheric concentrations and review of integrated scenario development and application. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Dankers R, Feyen L (2009) Flood hazard in Europe in an ensemble of regional climate scenarios. J Geoph Res Atmos 114, D16

    Google Scholar 

  • Dankers R et al (2014) First look at changes in flood hazard in the inter-sectoral impact model Intercomparison project ensemble. Proc Natl Acad Sci 111:3257–3261

    CrossRef  Google Scholar 

  • Doroszkiewicz J, Hisdal H, Romanowicz RJ (2016) Guidelines how to quantify and handle uncertainty when adapting to changes in floods under a future climate, report 2. CHIHE, Institute of Geophysics, PAS, Warsaw, Poland

    Google Scholar 

  • Field CB et al (eds) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Fischer EM et al (2013) Robust spatially aggregated projections of climate extremes. Nat Clim Change 3:1033–1038

    CrossRef  Google Scholar 

  • Hall J et al (2014) Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol Earth Syst Sci 18:2735–2772. www.hydrol-earth-syst-sci.net/18/2735/2014/

    Google Scholar 

  • Hirabayashi Y et al (2008) Global projections of changing risks of floods and droughts in a changing climate. Hydrol Sci J 53(4):754–772

    CrossRef  Google Scholar 

  • Hirabayashi Y et al (2013) Global flood risk under climate change. Nat Clim Change 3:816–821. doi:10.1038/nclimate1911

    CrossRef  Google Scholar 

  • Honti M, Scheidegger A, Stamn C (2014) The importance of hydrological uncertainty assessment methods in climate change impact studies. HESS 18:3301–3317

    Google Scholar 

  • IOŚ-PIB (2013a) Strategic adaptation plan for areas vulnerable to climate change until 2020 [SPA Strategiczny plan adaptacji dla sektorów i obszarów wrażliwych na zmiany klimatu do roku 2020]. Warszawa: Ministry of Environment

    Google Scholar 

  • IOŚ-PIB (2013b) Development and implementation of the strategic plan for adaptation for sectors and areas vulnerable to climate change. stage iii—adaptation of sensitive sectors and areas of polish climate change to 2070—project. [Opracowanie i wdrozenie strategicznego planu adaptacji dla sektorow i obszarow wrazliwych na zmiany klimatu. etap iii—Adaptacja wrazliwych sektorow i obszarow Polski do zmian klimatu do roku 2070 -projekt]. Warszawa, Ministry of Environment

    Google Scholar 

  • Knutti and Sedlacek (2012) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change Lett. doi:10.1038/NCLIMATE1716

    Google Scholar 

  • Krysanova V et al (2015) Modelling climate and land-use change impacts with SWIM: lessons learnt from multiple applications. Hydrol Sci J 60(4):606–635

    CrossRef  Google Scholar 

  • Kundzewicz ZW (ed) (2012) Changes in flood risk in Europe, Special Publication No. 10, IAHS Press, Wallingford, Oxfordshire, UK. 516 +xvi pp

    Google Scholar 

  • Kundzewicz ZW et al (2005) Trend detection in river flow time series: 1. Annual maximum flow. Hydrol Sci J 50(5):797–810

    CrossRef  Google Scholar 

  • Kundzewicz ZW et al (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53(1):3–10

    CrossRef  Google Scholar 

  • Kundzewicz ZW et al (2010) Assessing river flood risk and adaptation in Europe—review of projections for the future. Mitig Adapt Strat Glob Change 15(7):641–656

    CrossRef  Google Scholar 

  • Kundzewicz ZW et al (2013) Large floods in Europe, 1985–2009. Hydrol Sci J 58(1):1–7

    CrossRef  Google Scholar 

  • Kundzewicz ZW et al (2014) Flood risk and climate change: global and regional perspectives. Hydrol Sci J 59(1):1–28

    CrossRef  Google Scholar 

  • Kundzewicz ZW, Krysanova V, Dankers R, Hirabayashi Y, Kanae S, Hattermann FF, Huang S, Milly PCD, Stoffel M, Driessen PPJ, Matczak P, Quevauviller P, Schellnhuber H-J (2016) Differences in flood hazard projections in Europe—their causes and consequences for decision making. Hydrol Sci J (in review)

    Google Scholar 

  • Lawrence D, Hisdal H (2011) Hydrological projections for floods in Norway under a future climate. NVE Report 5-2011, Oslo, Norway

    Google Scholar 

  • Lehmann J, Coumou D, Frieler K (2015) Increased record-breaking precipitation events under global warming. Clim Change. doi:10.1007/s10584-015-1434-y

    Google Scholar 

  • Lehner B et al (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated assessment. Clim Change 75:273–299

    CrossRef  Google Scholar 

  • Madsen H et al (2014) Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J Hydrol 519:3634–3650

    CrossRef  Google Scholar 

  • Meinshausen, M et al (2011) The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Clim Change (Special Issue). http://edoc.gfz-potsdam.de/pik/get/5095/0/0ce498a63b150282a29b729de9615698/5095.pdf

    Google Scholar 

  • Milly PCD et al (2008) Stationarity is dead: whither water management? Science 319:573–574

    CrossRef  Google Scholar 

  • Milly PCD et al (2015) Commentary on critiques of “stationarity is dead: whither water management?”. Water Resour Res 51(9):7785–7789

    Google Scholar 

  • Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756

    CrossRef  Google Scholar 

  • Mudelsee M et al (2003) No upward trends in the occurrence of extreme floods in central Europe. Nature 425:166–169

    CrossRef  Google Scholar 

  • Nakicenovic N et al (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models. Part I—a discussion of principles. J Hydrol 10(3):282–290. doi:10.1016/0022-1694(70)90255-6

    CrossRef  Google Scholar 

  • Nicholls N, Seneviratne SI (2013) Comparing IPCC assessments: how do the AR4 and SREX assessments of changes in extremes differ? Clim Change. doi:10.1007/S10854-013-018-0

    Google Scholar 

  • Osuch M, Kindler J, Romanowicz RJ, Berbeka K, Banrowska A (2012) KLIMADA Strategia adaptacji Polski do zmian klimatu w zakresie sektora “Zasoby i gospodarka wodna”, KLIMADA project, Institute of Environmental Protection. National Research Institute, Warsaw (in Polish)

    Google Scholar 

  • Osuch M, Romanowicz RJ, Lawrence D, Wong WK (2015) Assessment of the influence of bias correction on meteorological drought projections for Poland. Hydrol Earth Syst Sci Discuss 12:10331–10377. doi:10.5194/hessd-12-10331-2015

    CrossRef  Google Scholar 

  • Rojas R et al (2011) Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrol Earth Syst Sci 15:2599–2620. doi:10.5194/hess-15-2599-2011

    CrossRef  Google Scholar 

  • Rojas R et al (2012) Assessment of future flood hazard in Europe using a large ensemble of bias corrected regional climate simulations. J Geophys Res Atmos 117:D17109. doi:10.1029/2012JD017461

    Google Scholar 

  • Romanowicz RJ et al (2016) Climate change impact on hydrological extremes (CHIHE): preliminary results from the Polish-Norwegian project, Acta Geophysica, accepted for publication

    Google Scholar 

  • Roudier PH, Andersson JCM, Donnelly CH, Feyen L, Greuell W, Ludwig F (2016) Projections of future floods and hydrological droughts in Europe under a +2 °C global warming. Clim Change. doi:10.1007/s10584-015-1570-4

    Google Scholar 

  • Ruiz-Villanueva V et al (2016) Decadal variability of floods in the northern foreland of the Tatra Mountains. Reg Environ Change 16(3):603–615. doi:10.1007/s10113-014-0694-9

    CrossRef  Google Scholar 

  • Ruiz-Villanueva V et al (2016b) Variability of flood frequency and magnitude during the late 20th and early 21st centuries in the northern foreland of the Tatra Mountains. This volume

    Google Scholar 

  • Seneviratne SI et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of working groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Schiermeier Q (2003) Analysis pours cold water on flood theory. Nature 425:111

    Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. doi:10.1023/A:1008202821328

    CrossRef  Google Scholar 

  • Strupczewski WG, Kochanek K, Feluch W, Bogdanowicz E, Singh VP (2009) On seasonal approach to nonstationary flood frequency analysis. Phys Chem Earth 34:670–678

    CrossRef  Google Scholar 

  • Trenberth KE, Fasullo JT, Shepherd ThG (2015) Attribution of climate extreme events. Nature Clim Change 5(8):725–730

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological data were provided by the Institute of Meteorology and Water Management (IMGW), Poland. Two co-authors (ZWK and MS) acknowledge the support of the FLORIST project (Flood risk on the northern foothills of the Tatra Mountains), via a grant from the Swiss government through the Swiss Contribution to the enlarged European Union (PSPB No. 153/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew W. Kundzewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Romanowicz, R.J., Kundzewicz, Z.W., Meresa, H.K., Stoffel, M., Krysanova, V., Doroszkiewicz, J. (2016). Projections of Changes in Flood Hazard in Two Headwater Catchments of the Vistula in the Context of European-Scale Studies. In: Kundzewicz, Z., Stoffel, M., Niedźwiedź, T., Wyżga, B. (eds) Flood Risk in the Upper Vistula Basin. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-41923-7_17

Download citation