Skip to main content

Feature Selection for Handling Concept Drift in the Data Stream Classification

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9729))

Abstract

With the advance in both hardware and software technologies, streaming data is ubiquitous today, and it is often a challenging task to store, analyze and visualize such rapid large volumes of data. One of difficult problems in the data stream domain is the data streams classification problem. The traditional classification algorithms have to be adapted to run in a streaming environment because of the underlying resource constraints in terms of memory and running time. There are at least three hard aspects in the data streams classification: large length, concept drift and feature selection. Concept drift is a common attribute of data streams that occurs as a result of changes in the underlying concepts. Feature selection has been extensively studied from a conventional mining perspective, but it is a much more challenging problem in the data stream domain. The concept drift and large length make impossible applying classical feature selection methods in the learning procedure. This paper proposes a new Bayesian framework to feature selection in data streams pattern recognition problem. We suggest a hierarchical probabilistic model with sparse regularization for estimation of decision rule parameters. The proposed approach gives a strong Bayesian formulation of the shrinkage criterion for predictor selection. Experimental results show that the proposed framework outperforms other methods of concept drift analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23(1), 69–101 (1996)

    Google Scholar 

  2. Dongre, P., Malik, L.: Stream Data Classification and Adapting to Gradual Concept Drift. International Journal of Advance Research in Computer Science and Management Studies 2(3), 125–129 (2014)

    Google Scholar 

  3. Chen, S., Wang, H., Zhou, S., Yu, P.: Stop chasing trends: discovering high order models in evolving data. In: Proceedings of the ICDE 2008, pp. 923–932 (2008)

    Google Scholar 

  4. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: SIGKDD, San Francisco, CA, USA, pp. 97–106, August 2001

    Google Scholar 

  5. Yang, Y., Wu, X., Zhu, X.: Combining proactive and reactive predictions for data streams. In: Proceedings of the SIGKDD, pp. 710–715 (2005)

    Google Scholar 

  6. Kolter, J., Maloof, M.: Using additive expert ensembles to cope with concept drift. In: ICML, Bonn, Germany, pp. 449–456, August 2005

    Google Scholar 

  7. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: KDD 2003, pp. 226–235 (2003)

    Google Scholar 

  8. Zhou, X., Li, S., Chang, C., Wu, J., Liu, K.: Information-value-based feature selection algorithm for anomaly detection over data streams. Tehnicki Vjesnik 21(2), 223–232 (2014)

    Google Scholar 

  9. Sauerbrei, W.: The use of resampling methods to simplify regression models in medical statistics. Apply Statistics 48, 313–339 (1999)

    MATH  Google Scholar 

  10. Sauerbrei, W., Schumacher, M.: A bootstrap resampling procedure for model building: Application to the cox regression model. Statistics in Medicine (1992)

    Google Scholar 

  11. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society (2005)

    Google Scholar 

  12. Zou, H.: The adaptive lasso and its oracle properties. Journal of the American Statistical Association (2006)

    Google Scholar 

  13. Zou, H., Li, R.: One-step sparse estimates in nonconcave penalized likelihood models (with discussion). Annals of Statistics (2008)

    Google Scholar 

  14. Seredin, O., Kopylov, A., Mottl, V.: Selection of subsets of ordered features in machine learning. In: Perner, P. (ed.) MLDM 2009. LNCS, vol. 5632, pp. 16–28. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Seredin, O., Mottl, V., Tatarchuk, A., Razin, N., Windridge, D.: Convex support and relevance vector machines for selective multimodal pattern recognition. In: 21st International Conference on Pattern Recognition (ICPR 2012), Tsukuba, Japan, November 11–15, 2012, pp. 1647–1650 (2012)

    Google Scholar 

  16. Fan, J., Samworth, R., Wu, Y.: Ultrahigh Dimensional Feature Selection: Beyond The Linear Model. J. Mach. Learn. Res. 10, 2013–2038 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Cai, D., Zhang, C., He, X.: Unsupervised Feature Selection for Multi-cluster Data. SIGKDD (2010)

    Google Scholar 

  18. Yang, H., Lyu, M.R., King, I.: Efficient Online Learning for Multitask Feature Selection. TKDD 7(2), 6 (2013)

    Article  Google Scholar 

  19. Song, Q., Ni, J., Wang, G.: A Fast Clustering-based Feature Subset Selection Algorithm for High-dimensional Data. TKDE 25(1) 2013

    Google Scholar 

  20. Maung, C., Schweitzer, H.: Pass-efficient Unsupervised Feature Selection. NIPS (2013)

    Google Scholar 

  21. Krasotkina, O., Mottl, V.: A Bayesian approach to sparse learning-to-rank for search engine optimization. In: Perner, P. (ed.) MLDM 2015. LNCS, vol. 9166, pp. 382–394. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  22. Krasotkina, O., Mottl, V.: A Bayesian approach to sparse Cox regression in high-dimentional survival analysis. In: Perner, P. (ed.) MLDM 2015. LNCS, vol. 9166, pp. 425–437. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  23. De Groot, M.: Optimal Statistical Decisions. McGraw-Hill Book Company (1970)

    Google Scholar 

  24. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  25. Vapnik, V.: Statistical Learning Theory. J. Wiley, NY (1998)

    MATH  Google Scholar 

  26. Tatarchuk, A., Mottl, V., Eliseyev, A., Windridge, D.: Selectivity supervision in com-bining pattern-recognition modalities by feature-and kernel-selective Support Vector Machines. In: Proceedings of the 19th International Conference on Pattern Recognition, vol. 1–6, pp. 2336–2339. IEEE (2008). ISBN 978-1-4244-2174-9

    Google Scholar 

  27. Markov, M., Krasotkina, O., Mottl, V., Muchnik, I.: Time-varying regression model with unknown time-volatility for nonstationary signal analysis. In: Proceedings of the 8th IASTED International Conference on Signal and Image Processing, Honolulu, Hawaii, USA, August 14–16, 2006, pp. 534–196 (2006)

    Google Scholar 

  28. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  29. Sniedovich, M.: Dynamic Programming. Marcel Dekker, NY (1991)

    MATH  Google Scholar 

  30. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis. Journal of Machine Learning Research (JMLR) (2010). http://sourceforge.net/projects/moa-datastream/

  31. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavalda, R.: New ensemble methods for evolving data streams. In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2009)

    Google Scholar 

  32. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  33. KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Krasotkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Turkov, P., Krasotkina, O., Mottl, V., Sychugov, A. (2016). Feature Selection for Handling Concept Drift in the Data Stream Classification. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2016. Lecture Notes in Computer Science(), vol 9729. Springer, Cham. https://doi.org/10.1007/978-3-319-41920-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41920-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41919-0

  • Online ISBN: 978-3-319-41920-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics