Skip to main content

Sickle Cell Disease and Acute Chest Syndrome: Mechanisms and Pathogenenesis

  • Chapter
  • First Online:
Hematologic Abnormalities and Acute Lung Syndromes

Abstract

Acute chest syndrome (ACS) is the major lung complication and leading cause of death in sickle cell disease (SCD). It is characterized by a rapid disease onset, pulmonary infiltration, hypoxemia, and several other clinical indications. Postmortem ACS lungs are characterized by histological evidence of alveolar capillary barrier disruption, fat emboli, and alveolar wall necrosis. Ischemia-reperfusion injury activation of invariant natural killer T lymphocytes is thought to heighten baseline pulmonary inflammation in SCD that may prime the lung for ACS development. Multiple factors, including hypoxia, infection, infarction, thrombosis, and fat emboli that are implicated in ACS pathogenesis are also associated with acute hemolysis. ACS is typically preceded by acute intravascular hemolysis, and the magnitude of anemia is linked to the severity of the lung injury. The heme hypothesis posits that the lung injury in ACS is caused by acute inflammation directly involving extracellular heme, a prototypical erythroid DAMP molecule released by hemolysis. In support of this model, the infusion of purified heme triggers a lethal acute lung injury in transgenic SCD mice that exhibit many of the characteristics of severe ACS. Additional experimental data indicate heme-induced ACS may involve vaso-occlusion and the release of neutrophil extracellular traps in the lung. Clinically, the risk of patients developing ACS is influenced by steady-state plasma concentrations of heme, and by polymorphisms in the gene encoding heme oxygenase-1, the rate-limiting heme degradation enzyme. Extracellular heme is therefore an ideal converging axis in the pathogenesis of ACS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charache S, Scott JC, Charache P. “Acute chest syndrome” in adults with sickle cell anemia. Microbiology, treatment, and prevention. Arch Intern Med. 1979;139(1):67–9.

    Article  CAS  PubMed  Google Scholar 

  2. Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639–44.

    Article  CAS  PubMed  Google Scholar 

  3. Gaston M, Rosse WF. The cooperative study of sickle cell disease: review of study design and objectives. Am J Pediatr Hematol Oncol. 1982;4(2):197–201.

    CAS  PubMed  Google Scholar 

  4. Gaston M, Smith J, Gallagher D, Flournoy-Gill Z, West S, Bellevue R, et al. Recruitment in the cooperative study of sickle cell disease (CSSCD). Control Clin Trials. 1987;8 Suppl 4:131S–40.

    Article  CAS  PubMed  Google Scholar 

  5. Castro O, Brambilla DJ, Thorington B, Reindorf CA, Scott RB, Gillette P, et al. The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood. 1994;84(2):643–9.

    CAS  PubMed  Google Scholar 

  6. Vichinsky EP, Styles LA, Colangelo LH, Wright EC, Castro O, Nickerson B. Acute chest syndrome in sickle cell disease: clinical presentation and course. Cooperative Study of Sickle Cell Disease. Blood. 1997;89(5):1787–92.

    CAS  PubMed  Google Scholar 

  7. Styles LA, Schalkwijk CG, Aarsman AJ, Vichinsky EP, Lubin BH, Kuypers FA. Phospholipase A2 levels in acute chest syndrome of sickle cell disease. Blood. 1996;87(6):2573–8.

    CAS  PubMed  Google Scholar 

  8. Styles LA, Aarsman AJ, Vichinsky EP, Kuypers FA. Secretory phospholipase A(2) predicts impending acute chest syndrome in sickle cell disease. Blood. 2000;96(9):3276–8.

    CAS  PubMed  Google Scholar 

  9. Bargoma EM, Mitsuyoshi JK, Larkin SK, Styles LA, Kuypers FA, Test ST. Serum C-reactive protein parallels secretory phospholipase A2 in sickle cell disease patients with vasoocclusive crisis or acute chest syndrome. Blood. 2005;105(8):3384–5.

    Article  CAS  PubMed  Google Scholar 

  10. Paul RN, Castro OL, Aggarwal A, Oneal PA. Acute chest syndrome: sickle cell disease. Eur J Haematol. 2011;87(3):191–207.

    Article  CAS  PubMed  Google Scholar 

  11. Miller ST. How I, treat acute chest syndrome in children with sickle cell disease. Blood. 2011;117(20):5297–305.

    Article  CAS  PubMed  Google Scholar 

  12. Desai PC, Ataga KI. The acute chest syndrome of sickle cell disease. Expert Opin Pharmacother. 2013;14(8):991–9.

    Article  CAS  PubMed  Google Scholar 

  13. Platt OS. The acute chest syndrome of sickle cell disease. N Engl J Med. 2000;342(25):1904–7.

    Article  CAS  PubMed  Google Scholar 

  14. Vichinsky EP, Neumayr LD, Earles AN, Williams R, Lennette ET, Dean D, et al. Causes and outcomes of the acute chest syndrome in sickle cell disease. National Acute Chest Syndrome Study Group. N Engl J Med. 2000;342(25):1855–65.

    Article  CAS  PubMed  Google Scholar 

  15. Gladwin MT, Vichinsky E. Pulmonary complications of sickle cell disease. N Engl J Med. 2008;359(21):2254–65.

    Article  CAS  PubMed  Google Scholar 

  16. Quinn CT, Shull EP, Ahmad N, Lee NJ, Rogers ZR, Buchanan GR. Prognostic significance of early vaso-occlusive complications in children with sickle cell anemia. Blood. 2007;109(1):40–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DeBaun MR, Rodeghier M, Cohen R, Kirkham FJ, Rosen CL, Roberts I, et al. Factors predicting future ACS episodes in children with sickle cell anemia. Am J Hematol. 2014;89(11):E212–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vance LD, Rodeghier M, Cohen RT, Rosen CL, Kirkham FJ, Strunk RC, et al. Increased risk of severe vaso-occlusive episodes after initial acute chest syndrome in children with sickle cell anemia less than 4 years old: Sleep and asthma cohort. Am J Hematol. 2015;90(5):371–5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Field JJ, DeBaun MR. Asthma and sickle cell disease: two distinct diseases or part of the same process? Hematology Am Soc Hematol Educ Program. 2009:45–53. doi:10.1182/asheducation-2009.1.45.

  20. Boyd JH, Macklin EA, Strunk RC, DeBaun MR. Asthma is associated with acute chest syndrome and pain in children with sickle cell anemia. Blood. 2006;108(9):2923–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boyd JH, Macklin EA, Strunk RC, DeBaun MR. Asthma is associated with increased mortality in individuals with sickle cell anemia. Haematologica. 2007;92(8):1115–8.

    Article  PubMed  Google Scholar 

  22. Gladwin MT, Rodgers GP. Pathogenesis and treatment of acute chest syndrome of sickle-cell anaemia. Lancet. 2000;355(9214):1476–8.

    Article  CAS  PubMed  Google Scholar 

  23. Vichinsky E, Williams R, Das M, Earles AN, Lewis N, Adler A, et al. Pulmonary fat embolism: a distinct cause of severe acute chest syndrome in sickle cell anemia. Blood. 1994;83(11):3107–12.

    CAS  PubMed  Google Scholar 

  24. Gladwin MT, Schechter AN, Shelhamer JH, Ognibene FP. The acute chest syndrome in sickle cell disease. Possible role of nitric oxide in its pathophysiology and treatment. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1368–76.

    Article  CAS  PubMed  Google Scholar 

  25. Knight-Madden JM, Forrester TS, Lewis NA, Greenough A. The impact of recurrent acute chest syndrome on the lung function of young adults with sickle cell disease. Lung. 2010;188(6):499–504.

    Article  PubMed  Google Scholar 

  26. Adisa OA, Hu Y, Ghosh S, Aryee D, Osunkwo I, Ofori-Acquah SF. Association between plasma free haem and incidence of vaso-occlusive episodes and acute chest syndrome in children with sickle cell disease. Br J Haematol. 2013;162(5):702–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davies SC, Luce PJ, Win AA, Riordan JF, Brozovic M. Acute chest syndrome in sickle-cell disease. Lancet. 1984;1(8367):36–8.

    Article  CAS  PubMed  Google Scholar 

  28. Snyder LS, Hertz MI, Harmon KR, Bitterman PB. Failure of lung repair following acute lung injury. Regulation of the fibroproliferative response (part 1). Chest. 1990;98(3):733–8.

    Article  CAS  PubMed  Google Scholar 

  29. Bean CJ, Boulet SL, Ellingsen D, Pyle ME, Barron-Casella EA, Casella JF, et al. Heme oxygenase-1 gene promoter polymorphism is associated with reduced incidence of acute chest syndrome among children with sickle cell disease. Blood. 2012;120(18):3822–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galarneau G, Coady S, Garrett ME, Jeffries N, Puggal M, Paltoo D, et al. Gene-centric association study of acute chest syndrome and painful crisis in sickle cell disease patients. Blood. 2013;122(3):434–42. doi:10.1182/blood-2013-01-478776.

  31. Burstein E, Hoberg JE, Wilkinson AS, Rumble JM, Csomos RA, Komarck CM, et al. COMMD proteins, a novel family of structural and functional homologs of MURR1. J Biol Chem. 2005;280(23):22222–32.

    Article  CAS  PubMed  Google Scholar 

  32. Zheng L, Liang P, Li J, Huang XB, Liu SC, Zhao HZ, et al. ShRNA-targeted COMMD7 suppresses hepatocellular carcinoma growth. PLoS One. 2012;7(9):e45412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Oliveira Filho RA, Silva GJ, de Farias Domingos I, Hatzlhofer BL, da Silva Araujo A, de Lima Filho JL, et al. Association between the genetic polymorphisms of glutathione S-transferase (GSTM1 and GSTT1) and the clinical manifestations in sickle cell anemia. Blood Cells Mol Dis. 2013;51(2):76–9.

    Article  PubMed  Google Scholar 

  34. Ellithy HN, Yousri S, Shahin GH. Relation between glutathione S-transferase genes (GSTM1, GSTT1, and GSTP1) polymorphisms and clinical manifestations of sickle cell disease in Egyptian patients. Hematology. 2015;20(10):598–606.

    Article  CAS  PubMed  Google Scholar 

  35. Redha NA, Mahdi N, Al-Habboubi HH, Almawi WY. Impact of VEGFA -583C > T polymorphism on serum VEGF levels and the susceptibility to acute chest syndrome in pediatric patients with sickle cell disease. Pediatr Blood Cancer. 2014;61(12):2310–2.

    Article  CAS  PubMed  Google Scholar 

  36. Powars DR. Beta s-gene-cluster haplotypes in sickle cell anemia. Clinical and hematologic features. Hematol Oncol Clin North Am. 1991;5(3):475–93.

    CAS  PubMed  Google Scholar 

  37. Bean CJ, Boulet SL, Yang G, Payne AB, Ghaji N, Pyle ME, et al. Acute chest syndrome is associated with single nucleotide polymorphism-defined beta globin cluster haplotype in children with sickle cell anaemia. Br J Haematol. 2013;163(2):268–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725–38.

    Article  CAS  PubMed  Google Scholar 

  39. Sullivan KJ, Kissoon N, Gauger C. Nitric oxide metabolism and the acute chest syndrome of sickle cell anemia. Pediatr Crit Care Med. 2008;9(2):159–68.

    Article  PubMed  Google Scholar 

  40. Stuart MJ, Setty BN. Sickle cell acute chest syndrome: pathogenesis and rationale for treatment. Blood. 1999;94(5):1555–60.

    CAS  PubMed  Google Scholar 

  41. Sakhalkar VS, Rao SP, Weedon J, Miller ST. Elevated plasma sVCAM-1 levels in children with sickle cell disease: impact of chronic transfusion therapy. Am J Hematol. 2004;76(1):57–60.

    Article  CAS  PubMed  Google Scholar 

  42. Liem RI, O'Gorman MR, Brown DL. Effect of red cell exchange transfusion on plasma levels of inflammatory mediators in sickle cell patients with acute chest syndrome. Am J Hematol. 2004;76(1):19–25.

    Article  PubMed  Google Scholar 

  43. Duits AJ, Pieters RC, Saleh AW, van Rosmalen E, Katerberg H, Berend K, et al. Enhanced levels of soluble VCAM-1 in sickle cell patients and their specific increment during vasoocclusive crisis. Clin Immunol Immunopathol. 1996;81(1):96–8.

    Article  CAS  PubMed  Google Scholar 

  44. Morris CR, Kuypers FA, Larkin S, Vichinsky EP, Styles LA. Patterns of arginine and nitric oxide in patients with sickle cell disease with vaso-occlusive crisis and acute chest syndrome. J Pediatr Hematol Oncol. 2000;22(6):515–20.

    Article  CAS  PubMed  Google Scholar 

  45. Hammerman SI, Kourembanas S, Conca TJ, Tucci M, Brauer M, Farber HW. Endothelin-1 production during the acute chest syndrome in sickle cell disease. Am J Respir Crit Care Med. 1997;156(1):280–5.

    Article  CAS  PubMed  Google Scholar 

  46. Osarogiagbon UR, Choong S, Belcher JD, Vercellotti GM, Paller MS, Hebbel RP. Reperfusion injury pathophysiology in sickle transgenic mice. Blood. 2000;96(1):314–20.

    CAS  PubMed  Google Scholar 

  47. Kalambur VS, Mahaseth H, Bischof JC, Kielbik MC, Welch TE, Vilback A, et al. Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy. Am J Hematol. 2004;77(2):117–25.

    Article  PubMed  Google Scholar 

  48. Sabaa N, de Franceschi L, Bonnin P, Castier Y, Malpeli G, Debbabi H, et al. Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease. J Clin Invest. 2008;118(5):1924–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Solovey A, Kollander R, Shet A, Milbauer LC, Choong S, Panoskaltsis-Mortari A, et al. Endothelial cell expression of tissue factor in sickle mice is augmented by hypoxia/reoxygenation and inhibited by lovastatin. Blood. 2004;104(3):840–6.

    Article  CAS  PubMed  Google Scholar 

  50. Kaul DK, Hebbel RP. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J Clin Invest. 2000;106(3):411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaul DK, Liu XD, Choong S, Belcher JD, Vercellotti GM, Hebbel RP. Anti-inflammatory therapy ameliorates leukocyte adhesion and microvascular flow abnormalities in transgenic sickle mice. Am J Physiol Heart Circ Physiol. 2004;287(1):H293–301.

    Article  CAS  PubMed  Google Scholar 

  52. Kollander R, Solovey A, Milbauer LC, Abdulla F, Kelm Jr RJ, Hebbel RP. Nuclear factor-kappa B (NFkappaB) component p50 in blood mononuclear cells regulates endothelial tissue factor expression in sickle transgenic mice: implications for the coagulopathy of sickle cell disease. Transl Res. 2010;155(4):170–7.

    Article  CAS  PubMed  Google Scholar 

  53. Cain DM, Vang D, Simone DA, Hebbel RP, Gupta K. Mouse models for studying pain in sickle disease: effects of strain, age, and acuteness. Br J Haematol. 2012;156(4):535–44.

    Article  CAS  PubMed  Google Scholar 

  54. Ghosh S, Adisa OA, Chappa P, Tan F, Jackson KA, Archer DR, et al. Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J Clin Invest. 2013;123:4809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pritchard Jr KA, Ou J, Ou Z, Shi Y, Franciosi JP, Signorino P, et al. Hypoxia-induced acute lung injury in murine models of sickle cell disease. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L705–14.

    Article  CAS  PubMed  Google Scholar 

  56. de Franceschi L, Baron A, Scarpa A, Adrie C, Janin A, Barbi S, et al. Inhaled nitric oxide protects transgenic SAD mice from sickle cell disease-specific lung injury induced by hypoxia/reoxygenation. Blood. 2003;102(3):1087–96.

    Article  PubMed  Google Scholar 

  57. Iyamu EW, Turner EA, Asakura T. Niprisan (Nix-0699) improves the survival rates of transgenic sickle cell mice under acute severe hypoxic conditions. Br J Haematol. 2003;122(6):1001–8.

    Article  CAS  PubMed  Google Scholar 

  58. Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014;123(3):377–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wallace KL, Marshall MA, Ramos SI, Lannigan JA, Field JJ, Strieter RM, et al. NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-gamma and CXCR3 chemokines. Blood. 2009;114(3):667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wallace KL, Linden J. Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease. Blood. 2010;116(23):5010–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Field JJ, Lin G, Okam MM, Majerus E, Keefer J, Onyekwere O, et al. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson. Blood. 2013;121(17):3329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Godeau B, Schaeffer A, Bachir D, Fleury-Feith J, Galacteros F, Verra F, et al. Bronchoalveolar lavage in adult sickle cell patients with acute chest syndrome: value for diagnostic assessment of fat embolism. Am J Respir Crit Care Med. 1996;153(5):1691–6.

    Article  CAS  PubMed  Google Scholar 

  63. Haupt HM, Moore GW, Bauer TW, Hutchins GM. The lung in sickle cell disease. Chest. 1982;81(3):332–7.

    Article  CAS  PubMed  Google Scholar 

  64. Hsu L, McDermott T, Brown L, Aguayo SM. Transgenic HbS mouse neutrophils in increased susceptibility to acute lung injury: implications for sickle acute chest syndrome. Chest. 1999;116(1 Suppl):92S.

    Article  CAS  PubMed  Google Scholar 

  65. Maitre B, Habibi A, Roudot-Thoraval F, Bachir D, Belghiti DD, Galacteros F, et al. Acute chest syndrome in adults with sickle cell disease. Chest. 2000;117(5):1386–92.

    Article  CAS  PubMed  Google Scholar 

  66. Ballas SK, Marcolina MJ. Hyperhemolysis during the evolution of uncomplicated acute painful episodes in patients with sickle cell anemia. Transfusion. 2006;46(1):105–10.

    Article  PubMed  Google Scholar 

  67. Sprinkle RH, Cole T, Smith S, Buchanan GR. Acute chest syndrome in children with sickle cell disease. A retrospective analysis of 100 hospitalized cases. Am J Pediatr Hematol Oncol. 1986;8(2):105–10.

    CAS  PubMed  Google Scholar 

  68. Klings ES, Christman BW, McClung J, Stucchi AF, McMahon L, Brauer M, et al. Increased F2 isoprostanes in the acute chest syndrome of sickle cell disease as a marker of oxidative stress. Am J Respir Crit Care Med. 2001;164(7):1248–52.

    Article  CAS  PubMed  Google Scholar 

  69. van Agtmael MA, Cheng JD, Nossent HC. Acute chest syndrome in adult Afro-Caribbean patients with sickle cell disease. Analysis of 81 episodes among 53 patients. Arch Intern Med. 1994;154(5):557–61.

    Article  PubMed  Google Scholar 

  70. Hebbel RP, Morgan WT, Eaton JW, Hedlund BE. Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci U S A. 1988;85(1):237–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu SC, Zhai S, Palek J. Detection of hemin release during hemoglobin S denaturation. Blood. 1988;71(6):1755–8.

    CAS  PubMed  Google Scholar 

  72. Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002;100(3):879–87.

    Article  CAS  PubMed  Google Scholar 

  73. Umbreit J. Methemoglobin—it’s not just blue: a concise review. Am J Hematol. 2007;82(2):134–44.

    Article  CAS  PubMed  Google Scholar 

  74. Hebbel RP. Reconstructing sickle cell disease: a data-based analysis of the “hyperhemolysis paradigm” for pulmonary hypertension from the perspective of evidence-based medicine. Am J Hematol. 2011;86(2):123–54.

    Article  CAS  PubMed  Google Scholar 

  75. Foidart M, Liem HH, Adornato BT, Engel WK, Muller-Eberhard U. Hemopexin metabolism in patients with altered serum levels. J Lab Clin Med. 1983;102(5):838–46.

    CAS  PubMed  Google Scholar 

  76. Muller-Eberhard U, Javid J, Liem HH, Hanstein A, Hanna M. Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood. 1968;32(5):811–5.

    CAS  PubMed  Google Scholar 

  77. Wochner RD, Spilberg I, Iio A, Liem HH, Muller-Eberhard U. Hemopexin metabolism in sickle-cell disease, porphyrias and control subjects—effects of heme injection. N Engl J Med. 1974;290(15):822–6.

    Article  CAS  PubMed  Google Scholar 

  78. Chen G, Zhang D, Fuchs TA, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood. 2014;123(24):3818–27.

    Google Scholar 

  79. Belcher JD, Mahaseth H, Welch TE, Otterbein LE, Hebbel RP, Vercellotti GM. Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice. J Clin Invest. 2006;116(3):808–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ghosh S, Ofori-Acquah SF. Acute chest syndrome in transgenic mouse models of sickle cell disease triggered by free heme. Blood. 2010;116 Suppl 1:944.

    Google Scholar 

  81. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  82. Lotze MT, Deisseroth A, Rubartelli A. Damage associated molecular pattern molecules. Clin Immunol. 2007;124(1):1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF, Alves LS, et al. Characterization of heme as activator of Toll-like receptor 4. J Biol Chem. 2007;282(28):20221–9.

    Article  CAS  PubMed  Google Scholar 

  84. Schimmel M, Nur E, Biemond BJ, van Mierlo GJ, Solati S, Brandjes DP, et al. Nucleosomes and neutrophil activation in sickle cell disease painful crisis. Haematologica. 2013;98(11):1797–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grinberg LN, O'Brien PJ, Hrkal Z. The effects of heme-binding proteins on the peroxidative and catalatic activities of hemin. Free Radic Biol Med. 1999;27(1-2):214–9.

    Article  CAS  PubMed  Google Scholar 

  86. Ii M, Matsunaga N, Hazeki K, Nakamura K, Takashima K, Seya T, et al. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol Pharmacol. 2006;69(4):1288–95.

    Article  CAS  PubMed  Google Scholar 

  87. Sha T, Sunamoto M, Kitazaki T, Sato J, Ii M, Iizawa Y. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model. Eur J Pharmacol. 2007;571(2–3):231–9.

    Article  CAS  PubMed  Google Scholar 

  88. Tidswell M, Tillis W, Larosa SP, Lynn M, Wittek AE, Kao R, et al. Phase 2 trial of eritoran tetrasodium (E5564), a toll-like receptor 4 antagonist, in patients with severe sepsis. Crit Care Med. 2010; 38(1):72–83.

    Google Scholar 

  89. Rice TW, Wheeler AP, Bernard GR, Vincent JL, Angus DC, Aikawa N, et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit Care Med. 2010;38(8):1685–94.

    Google Scholar 

  90. Opal SM, Laterre PF, Francois B, LaRosa SP, Angus DC, Mira JP, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA. 2013;309(11):1154–62.

    Article  CAS  PubMed  Google Scholar 

  91. Tse MT. Trial watch: sepsis study failure highlights need for trial design rethink. Nat Rev Drug Discov. 2013;12(5):334.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by research funding from the National Heart, Lung and Blood Institute (Award Number: HL106192, HL106192S1, and U01HL117721). The authors thank Sonia Mckoy for comments and proofreading that helped to improve this book chapter.

Authorship

Contribution: OA, AOA, ADA, SG, and SFOA prepared, wrote, and edited the chapter.

Conflict of Interest

The authors OA, AOA, ADA, SG, and SFOA declare that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon Fiifi Ofori-Acquah PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adisa, O.A., Owusu-Ansah, A., Abrahams, A.D., Ghosh, S., Ofori-Acquah, S.F. (2017). Sickle Cell Disease and Acute Chest Syndrome: Mechanisms and Pathogenenesis. In: Lee, J., Donahoe, M. (eds) Hematologic Abnormalities and Acute Lung Syndromes. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-41912-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41912-1_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-41910-7

  • Online ISBN: 978-3-319-41912-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics