Leukocyte Kinetics and Migration in the Lungs

Chapter

Abstract

Neutrophil recruitment into the alveolar air space is central to the inflammatory response in the lung. Unlike the systemic microcirculation, the pulmonary capillaries but not venules are the primary site of neutrophil recruitment into the inflamed air space. Neutrophils are larger in diameter than most pulmonary capillaries and are required to deform into an elliptical shape prior to entrance into a capillary segment. The time spent during deformation, entrance, and transit through the capillary network results in concentration of neutrophils within the pulmonary microcirculation. This chapter provides an overview of the molecular and biophysical mechanisms that regulate neutrophil margination in the lung microcirculation during homeostasis and recruitment into the air spaces during inflammation. Here, we describe neutrophil recruitment into the inflamed air spaces as a coordination of five sequential steps of capillary sequestration and retention, trans-luminal crawling, trans-endothelial migration, trans-interstitial migration, and trans-epithelial migration. Our current understanding of these five sequential steps is partially based on intravital microscopy studies performed in the nonpulmonary vascular beds of mice. Recently, intravital microscopy approaches that allow visualization of the pulmonary microcirculation in live mice have become available. Intravital microscopy studies of the lung should be conducted in mice to elucidate the molecular pathways that dictate neutrophil kinetics in the lung.

Keywords

Neutrophil MPE-IVM Lung P-selectin β2-integrins CD18 Intravital microscopy Marginated pool Pulmonary capillaries 

References

  1. 1.
    Fraser RG, Pare JAP. Structure and function of the lung: with emphasis on roentgenology. Philadelphia: Saunders; 1977. p. 2–4.Google Scholar
  2. 2.
    Burns AR, Smith CW, Walker DC. Unique structural features that influence neutrophil emigration into the lung. Physiol Rev. 2003;83(2):309–36.PubMedCrossRefGoogle Scholar
  3. 3.
    Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15(7):602–11.PubMedCrossRefGoogle Scholar
  4. 4.
    Doerschuk CM. Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation. 2001;8(2):71–88.PubMedCrossRefGoogle Scholar
  5. 5.
    Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest. 2012;122(8):2731–40.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Doerschuk CM, Beyers N, Coxson HO, Wiggs B, Hogg JC. Comparison of neutrophil and capillary diameters and their relation to neutrophil sequestration in the lung. J Appl Physiol. 1993;74(6):3040–5.PubMedGoogle Scholar
  8. 8.
    Hogg JC, McLean T, Martin BA, Wiggs B. Erythrocyte transit and neutrophil concentration in the dog lung. J Appl Physiol. 1988;65(3):1217–25.PubMedGoogle Scholar
  9. 9.
    Lien DC, Wagner Jr WW, Capen RL, Haslett C, Hanson WL, Hofmeister SE, et al. Physiological neutrophil sequestration in the lung: visual evidence for localization in capillaries. J Appl Physiol. 1987;62(3):1236–43.PubMedGoogle Scholar
  10. 10.
    Hogg JC, Doerschuk CM. Leukocyte traffic in the lung. Annu Rev Physiol. 1995;57:97–114.PubMedCrossRefGoogle Scholar
  11. 11.
    Gebb SA, Graham JA, Hanger CC, Godbey PS, Capen RL, Doerschuk CM, et al. Sites of leukocyte sequestration in the pulmonary microcirculation. J Appl Physiol. 1995;79(2):493–7.PubMedGoogle Scholar
  12. 12.
    Tanaka K, Koike Y, Shimura T, Okigami M, Ide S, Toiyama Y, et al. In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model. PLoS One. 2014;9(11):e111888.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Looney MR, Thornton EE, Sen D, Lamm WJ, Glenny RW, Krummel MF. Stabilized imaging of immune surveillance in the mouse lung. Nat Methods. 2011;8(1):91–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Ley K, Mestas J, Pospieszalska MK, Sundd P, Groisman A, Zarbock A. Chapter 11. Intravital microscopic investigation of leukocyte interactions with the blood vessel wall. Methods Enzymol. 2008;445:255–79.PubMedCrossRefGoogle Scholar
  15. 15.
    Hickey MJ, Westhorpe CL. Imaging inflammatory leukocyte recruitment in kidney, lung and liver—challenges to the multi-step paradigm. Immunol Cell Biol. 2013;91(4):281–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Bennewitz MF, Watkins SC, Sundd P. Quantitative intravital two-photon excitation microscopy reveals absence of pulmonary vaso-occlusion in unchallenged Sickle Cell Disease mice. Intra Vital. 2014;3(1):e29748.Google Scholar
  17. 17.
    Presson Jr RG, Brown MB, Fisher AJ, Sandoval RM, Dunn KW, Lorenz KS, et al. Two-photon imaging within the murine thorax without respiratory and cardiac motion artifact. Am J Pathol. 2011;179(1):75–82.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Yang Y, Yang G, Schmidt EP. In vivo measurement of the mouse pulmonary endothelial surface layer. J Vis Exp. 2013;72:e50322.PubMedGoogle Scholar
  19. 19.
    Tabuchi A, Mertens M, Kuppe H, Pries AR, Kuebler WM. Intravital microscopy of the murine pulmonary microcirculation. J Appl Physiol. 2008;104(2):338–46.PubMedCrossRefGoogle Scholar
  20. 20.
    Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012;18(8):1217–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Wiggs BR, English D, Quinlan WM, Doyle NA, Hogg JC, Doerschuk CM. Contributions of capillary pathway size and neutrophil deformability to neutrophil transit through rabbit lungs. J Appl Physiol. 1994;77(1):463–70.PubMedGoogle Scholar
  22. 22.
    Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol. 2008;295(3):L379–99.Google Scholar
  23. 23.
    Looney MR, Bhattacharya J. Live imaging of the lung. Annu Rev Physiol. 2014;76:431–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Cella F, Diaspro A. Two-photon excitation microscopy: a superb wizard for fluorescence imaging. In: Diaspro A, editor. Nanoscopy and multidimensional optical fluorescence microscopy. Boca Raton, FL: CRC Press; 2010. 7-1-12.Google Scholar
  25. 25.
    Faust N, Varas F, Kelly LM, Heck S, Graf T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood. 2000;96(2):719–26.PubMedGoogle Scholar
  26. 26.
    Hasenberg A, Hasenberg M, Mann L, Neumann F, Borkenstein L, Stecher M, et al. Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes. Nat Methods. 2015;12(5):445–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Yipp BG, Kubes P. Antibodies against neutrophil LY6G do not inhibit leukocyte recruitment in mice in vivo. Blood. 2013;121(1):241–2.PubMedCrossRefGoogle Scholar
  28. 28.
    Kreisel D, Nava RG, Li W, Zinselmeyer BH, Wang B, Lai J, et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci U S A. 2010;107(42):18073–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Weibel ER. The pathway for oxygen: structure and function in the mammalian respiratory system. Cambridge, MA: Harvard University Press; 1984. 425 p.Google Scholar
  30. 30.
    Walker DC, Behzad AR, Chu F. Neutrophil migration through preexisting holes in the basal laminae of alveolar capillaries and epithelium during streptococcal pneumonia. Microvasc Res. 1995;50(3):397–416.PubMedCrossRefGoogle Scholar
  31. 31.
    Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol. 2012;2(1):675–709.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Guntheroth WG, Luchtel DL, Kawabori I. Pulmonary microcirculation: tubules rather than sheet and post. J Appl Physiol. 1982;53(2):510–5.PubMedGoogle Scholar
  33. 33.
    Hogg JC. Neutrophil kinetics and lung injury. Physiol Rev. 1987;67(4):1249–95.PubMedGoogle Scholar
  34. 34.
    Bathe M, Shirai A, Doerschuk CM, Kamm RD. Neutrophil transit times through pulmonary capillaries: the effects of capillary geometry and fMLP-stimulation. Biophys J. 2002;83(4):1917–33.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Huang Y, Doerschuk CM, Kamm RD. Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J Appl Physiol. 2001;90:545–64.PubMedCrossRefGoogle Scholar
  36. 36.
    Sundd P. Micropipette cell adhesion assay: a novel in vitro assay to model leukocyte adhesion in the pulmonary capillaries of the lung [Ph.D.]. Athens: Ohio University; 2007.Google Scholar
  37. 37.
    Staub NC, Schultz EL. Pulmonary capillary length in dogs, cat and rabbit. Respir Physiol. 1968;5(3):371–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Fenton BM, Wilson DW, Cokelet GR. Analysis of the effects of measured white blood cell entrance times on hemodynamics in a computer model of a microvascular bed. Pflugers Arch. 1985;403(4):396–401.PubMedCrossRefGoogle Scholar
  39. 39.
    Evans E, Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J. 1989;56(1):151–60.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tran-Son-Tay R, Needham D, Yeung A, Hochmuth RM. Time-dependent recovery of passive neutrophils after large deformation. Biophys J. 1991;60(4):856–66.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Evans E, Kukan B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood. 1984;64(5):1028–35.PubMedGoogle Scholar
  42. 42.
    Gabriele S, Benoliel AM, Bongrand P, Theodoly O. Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin II activity in capillary leukocyte trafficking. Biophys J. 2009;96(10):4308–18.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Sundd P, Zou X, Goetz DJ, Tees DF. Leukocyte adhesion in capillary-sized. P-selectin-coated micropipettes. Microcirculation. 2008;15(2):109–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Shao JY, Hochmuth RM. The resistance to flow of individual human neutrophils in glass capillary tubes with diameters between 4.65 and 7.75 μm. Microcirculation. 1997;4(1):61–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Lien DC, Henson PM, Capen RL, Henson JE, Hanson WL, Wagner Jr WW, et al. Neutrophil kinetics in the pulmonary microcirculation during acute inflammation. Lab Invest. 1991;65(2):145–59.PubMedGoogle Scholar
  46. 46.
    Aoki T, Suzuki Y, Nishio K, Suzuki K, Miyata A, Iigou Y, et al. Role of CD18-ICAM-1 in the entrapment of stimulated leukocytes in alveolar capillaries of perfused rat lungs. Am J Physiol Heart Circ Physiol. 1997;273(5):H2361–71.Google Scholar
  47. 47.
    Roller J, Wang Y, Rahman M, Schramm R, Laschke MW, Menger MD, et al. Direct in vivo observations of P-selectin glycoprotein ligand-1-mediated leukocyte-endothelial cell interactions in the pulmonary microvasculature in abdominal sepsis in mice. Inflamm Res. 2013;62(3):275–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Parthasarathi K, Ichimura H, Monma E, Lindert J, Quadri S, Issekutz A, et al. Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries. J Clin Invest. 2006;116(8):2193–200.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bullard DC, Qin L, Lorenzo I, Quinlin WM, Doyle NA, Bosse R, et al. P-selectin/ICAM-1 double mutant mice: acute emigration of neutrophils into the peritoneum is completely absent but is normal into pulmonary alveoli. J Clin Invest. 1995;95(4):1782–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Doerschuk CM, Quinlan WM, Doyle NA, Bullard DC, Vestweber D, Jones ML, et al. The role of P-selectin and ICAM-1 in acute lung injury as determined using blocking antibodies and mutant mice. J Immunol. 1996;157(10):4609–14.PubMedGoogle Scholar
  51. 51.
    Kuebler WM, Kuhnle GE, Groh J, Goetz AE. Contribution of selectins to leucocyte sequestration in pulmonary microvessels by intravital microscopy in rabbits. J Physiol. 1997;501(Pt 2):375–86.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.PubMedCrossRefGoogle Scholar
  53. 53.
    Doyle NA, Bhagwan SD, Meek BB, Kutkoski GJ, Steeber DA, Tedder TF, et al. Neutrophil margination, sequestration, and emigration in the lungs of L-selectin-deficient mice. J Clin Invest. 1997;99(3):526–33.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619–47.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Anderson GJ, Roswit WT, Holtzman MJ, Hogg JC, Van Eeden SF. Effect of mechanical deformation of neutrophils on their CD18/ICAM-1-dependent adhesion. J Appl Physiol. 2001;91(3):1084–90.PubMedGoogle Scholar
  56. 56.
    Doerschuk CM, Winn RK, Coxson HO, Harlan JM. CD18-Dependent and -independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J Immunol. 1990;144(6):2327–33.PubMedGoogle Scholar
  57. 57.
    Devi S, Wang Y, Chew WK, Lima R, A-González N, Mattar CN, et al. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J Exp Med. 2013;210(11):2321–36.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694–707.PubMedCrossRefGoogle Scholar
  59. 59.
    Reutershan J, Basit A, Galkina EV, Ley K. Sequential recruitment of neutrophils into lung and bronchoalveolar lavage fluid in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L807–15.PubMedCrossRefGoogle Scholar
  60. 60.
    Rittirsch D, Flierl MA, Day DE, Nadeau BA, McGuire SR, Hoesel LM, et al. Acute lung injury induced by lipopolysaccharide is independent of complement activation. J Immunol. 2008;180(11):7664–72.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Andonegui G, Bonder CS, Green F, Mullaly SC, Zbytnuik L, Raharjo E, et al. Endothelium-derived toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest. 2003;111(7):1011–20.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Andonegui G, Zhou H, Bullard D, Kelly MM, Mullaly SC, McDonald B, et al. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. J Clin Invest. 2009;119(7):1921–30.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Kuebler WM, Borges J, Sckell A, Kuhnle GE, Bergh K, Messmer K, et al. Role of L-selectin in leukocyte sequestration in lung capillaries in a rabbit model of endotoxemia. Am J Respir Crit Care Med. 2000;161(1):36–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Kubo H, Doyle NA, Graham L, Bhagwan SD, Quinlan WM, Doerschuk CM. L- and P-selectin and CD11/CD18 in intracapillary neutrophil sequestration in rabbit lungs. Am J Respir Crit Care Med. 1999;159(1):267–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Choudhury S, Wilson MR, Goddard ME, O'Dea KP, Takata M. Mechanisms of early pulmonary neutrophil sequestration in ventilator-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2004;287(5):L902–10.PubMedCrossRefGoogle Scholar
  66. 66.
    Suwa T, Hogg JC, Klut ME, Hards J, van Eeden SF. Interleukin-6 changes deformability of neutrophils and induces their sequestration in the lung. Am J Respir Crit Care Med. 2001;163(4):970–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Mulligan M, Miyasaka M, Tamatani T, Jones M, Ward P. Requirements for L-selectin in neutrophil-mediated lung injury in rats. J Immunol. 1994;152(2):832–40.PubMedGoogle Scholar
  68. 68.
    Doerschuk CM. The role of CD18-mediated adhesion in neutrophil sequestration induced by infusion of activated plasma in rabbits. Am J Respir Cell Mol Biol. 1992;7(2):140–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Mulligan MS, Wilson GP, Todd RF, Smith CW, Anderson DC, Varani J, et al. Role of beta 1, beta 2 integrins and ICAM-1 in lung injury after deposition of IgG and IgA immune complexes. J Immunol. 1993;150(6):2407–17.PubMedGoogle Scholar
  70. 70.
    Hellewell PG, Young SK, Henson PM, Worthen GS. Disparate role of the beta 2-integrin CD18 in the local accumulation of neutrophils in pulmonary and cutaneous inflammation in the rabbit. Am J Respir Cell Mol Biol. 1994;10(4):391–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest. 2006;116(12):3211–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Yoshida K, Kondo R, Wang Q, Doerschuk CM. Neutrophil cytoskeletal rearrangements during capillary sequestration in bacterial pneumonia in rats. Am J Respir Crit Care Med. 2006;174(6):689–98.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ramamoorthy C, Sasaki SS, Su DL, Sharar SR, Harlan JM, Winn RK. CD18 adhesion blockade decreases bacterial clearance and neutrophil recruitment after intrapulmonary E. coli, but not after S. aureus. J Leukoc Biol. 1997;61(2):167–72.PubMedGoogle Scholar
  74. 74.
    Kumasaka T, Doyle NA, Quinlan WM, Graham L, Doerschuk CM. Role of CD 11/CD 18 in neutrophil emigration during acute and recurrent Pseudomonas aeruginosa-induced pneumonia in rabbits. Am J Pathol. 1996;148(4):1297–305.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Qin L, Quinlan WM, Doyle NA, Graham L, Sligh JE, Takei F, et al. The roles of CD11/CD18 and ICAM-1 in acute Pseudomonas aeruginosa-induced pneumonia in mice. J Immunol. 1996;157(11):5016–21.PubMedGoogle Scholar
  76. 76.
    Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol. 2014;306(3):L217–30.Google Scholar
  77. 77.
    Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122(16):2784–94.PubMedCrossRefGoogle Scholar
  78. 78.
    Ortiz-Munoz G, Mallavia B, Bins A, Headley M, Krummel MF, Looney MR. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood. 2014;124(17):2625–34.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122(7):2661–71.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Liang J, Jung Y, Tighe RM, Xie T, Liu N, Leonard M, et al. A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. Am J Physiol. 2012;302(9):L933–40.Google Scholar
  81. 81.
    Bratton DL, Henson PM. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol. 2011;32(8):350–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Basit A, Reutershan J, Morris MA, Solga M, Rose Jr CE, Ley K. ICAM-1 and LFA-1 play critical roles in LPS-induced neutrophil recruitment into the alveolar space. Am J Physiol. 2006;291(2):L200–7.Google Scholar
  83. 83.
    Moore KL, Eaton SF, Lyons DE, Lichenstein HS, Cummings RD, McEver RP. The P-selectin glycoprotein ligand form human neutrophils displays sialylated, fucosylated. O-linked poly-N-acetyllactosamine. J Biol Chem. 1994;269(37):23318–27.PubMedGoogle Scholar
  84. 84.
    Moore KL, Patel KD, Bruehl RE, Li F, Johnson DA, Lichenstein HS, et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol. 1995;128:661–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Burns AR, Takei F, Doerschuk CM. Quantitation of ICAM-1 expression in mouse lung during pneumonia. J Immunol. 1994;153(7):3189–98.PubMedGoogle Scholar
  86. 86.
    Mulligan M, Watson S, Fennie C, Ward P. Protective effects of selectin chimeras in neutrophil-mediated lung injury. J Immunol. 1993;151(11):6410–7.PubMedGoogle Scholar
  87. 87.
    Mulligan MS, Polley MJ, Bayer RJ, Nunn MF, Paulson JC, Ward PA. Neutrophil-dependent acute lung injury. Requirement for P-selectin (GMP-140). J Clin Invest. 1992;90(4):1600–7.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kumasaka T, Quinlan WM, Doyle NA, Condon TP, Sligh J, Takei F, et al. Role of the intercellular adhesion molecule-1(ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice. J Clin Invest. 1996;97(10):2362–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kandasamy K, Sahu G, Parthasarathi K. Real-time imaging reveals endothelium-mediated leukocyte retention in LPS-treated lung microvessels. Microvasc Res. 2012;83(3):323–31.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Mulligan MS, Varani J, Warren JS, Till GO, Smith CW, Anderson DC, et al. Roles of beta 2 integrins of rat neutrophils in complement- and oxygen radical-mediated acute inflammatory injury. J Immunol. 1992;148(6):1847–57.PubMedGoogle Scholar
  91. 91.
    Motosugi H, Quinlan WM, Bree M, Doerschuk CM. Role of CD11b in focal acid-induced pneumonia and contralateral lung injury in rats. Am J Respir Crit Care Med. 1998;157(1):192–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Motosugi H, Graham L, Noblitt TW, Doyle N, Quinlan WM, Li Y, et al. Changes in neutrophil actin and shape during sequestration induced by complement fragments in rabbits. Am J Pathol. 1996;149(5):963–73.PubMedPubMedCentralGoogle Scholar
  93. 93.
    McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. 2015;107(3):331–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wang N. Electron microscopy in diagnostic pathology. Nonneoplastic disease. In: Schraufnagel D, editor. Electron microscopy of the lung. Lung biology in health and disease, vol. 48. New York: Dekker; 1990. p. 429–90.Google Scholar
  95. 95.
    Kiefmann R, Heckel K, Schenkat S, Dorger M, Goetz AE. Role of p-selectin in platelet sequestration in pulmonary capillaries during endotoxemia. J Vasc Res. 2006;43(5):473–81.PubMedCrossRefGoogle Scholar
  96. 96.
    Asaduzzaman M, Lavasani S, Rahman M, Zhang S, Braun OO, Jeppsson B, et al. Platelets support pulmonary recruitment of neutrophils in abdominal sepsis. Crit Care Med. 2009;37(4):1389–96.PubMedCrossRefGoogle Scholar
  97. 97.
    Asaduzzaman M, Rahman M, Jeppsson B, Thorlacius H. P-selectin glycoprotein-ligand-1 regulates pulmonary recruitment of neutrophils in a platelet-independent manner in abdominal sepsis. Br J Pharmacol. 2009;156(2):307–15.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Shao HZ, Qin BY. rPSGL-1-Ig, a recombinant PSGL-1-Ig fusion protein, ameliorates LPS-induced acute lung injury in mice by inhibiting neutrophil migration. Cell Mol Biol. 2015;61(1):1–6.PubMedGoogle Scholar
  99. 99.
    Hattori R, Hamilton K, Fugate R, McEver R, Sims P. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J Biol Chem. 1989;264(14):7768–71.PubMedGoogle Scholar
  100. 100.
    Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J, Bilbao I, et al. Neutrophils scan for activated platelets to initiate inflammation. Science. 2014;346(6214):1234–8.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hyun YM, Sumagin R, Sarangi PP, Lomakina E, Overstreet MG, Baker CM, et al. Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels. J Exp Med. 2012;209(7):1349–62.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med. 2006;203(12):2569–75.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Burns A, Bowden R, Abe Y, Walker D, Simon S, Entman M, et al. P-selectin mediates neutrophil adhesion to endothelial cell borders. J Leukoc Biol. 1999;65(3):299–306.PubMedGoogle Scholar
  104. 104.
    Burns AR, Walker DC, Brown ES, Thurmon LT, Bowden RA, Keese CR, et al. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentiallly at tricellular corners. J Immunol. 1997;159:2893–903.PubMedGoogle Scholar
  105. 105.
    Halai K, Whiteford J, Ma B, Nourshargh S, Woodfin A. ICAM-2 facilitates luminal interactions between neutrophils and endothelial cells in vivo. J Cell Sci. 2014;127(Pt 3):620–9.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Walker DC, MacKenzie A, Hosford S. The structure of the tricellular region of endothelial tight junctions of pulmonary capillaries analyzed by freeze-fracture. Microvasc Res. 1994;48(3):259–81.PubMedCrossRefGoogle Scholar
  107. 107.
    Gerwin N, Gonzalo JA, Lloyd C, Coyle AJ, Reiss Y, Banu N, et al. Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2 deficient mice results in extended hyperresponsiveness. Immunity. 1999;10(1):9–19.PubMedCrossRefGoogle Scholar
  108. 108.
    Muller WA. The regulation of transendothelial migration: new knowledge and new questions. Cardiovasc Res. 2015;107(3):310–20.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Woodfin A, Voisin MB, Beyrau M, Colom B, Caille D, Diapouli FM, et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol. 2011;12(8):761–9.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Burns AR, Bowden RA, MacDonell SD, Walker DC, Odebunmi TO, Donnachie EM, et al. Analysis of tight junctions during neutrophil transendothelial migration. J Cell Sci. 2000;113(Pt 1):45–57.PubMedGoogle Scholar
  111. 111.
    Carman CV, Springer TA. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol. 2004;167(2):377–88.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol. 2004;5(4):261–70.PubMedCrossRefGoogle Scholar
  113. 113.
    Simionescu N, Simionescu M, Palade GE. Open junctions in the endothelium of the postcapillary venules of the diaphragm. J Cell Biol. 1978;79(1):27–44.PubMedCrossRefGoogle Scholar
  114. 114.
    Simionescu N, Simionescu M, Palade GE. Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. I. Bipolar microvascular fields. Microvasc Res. 1978;15(1):1–16.PubMedCrossRefGoogle Scholar
  115. 115.
    Marchesi VT, Florey HW. Electron micrographic observations on the emigration of leucocytes. Q J Exp Physiol Cogn Med Sci. 1960;45:343–8.PubMedGoogle Scholar
  116. 116.
    Huang MT, Larbi KY, Scheiermann C, Woodfin A, Gerwin N, Haskard DO, et al. ICAM-2 mediates neutrophil transmigration in vivo: evidence for stimulus specificity and a role in PECAM-1-independent transmigration. Blood. 2006;107(12):4721–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Schmidt EP, Lee WL, Zemans RL, Yamashita C, Downey GP. On, around, and through: neutrophil-endothelial interactions in innate immunity. Physiology. 2011;26(5):334–47.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wang Q, Pfeiffer 2nd GR, Stevens T, Doerschuk CM. Lung microvascular and arterial endothelial cells differ in their responses to intercellular adhesion molecule-1 ligation. Am J Respir Crit Care Med. 2002;166(6):872–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Huang AJ, Manning JE, Bandak TM, Ratau MC, Hanser KR, Silverstein SC. Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells. J Cell Biol. 1993;120(6):1371–80.PubMedCrossRefGoogle Scholar
  120. 120.
    Martinelli R, Gegg M, Longbottom R, Adamson P, Turowski P, Greenwood J. ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol Biol Cell. 2009;20(3):995–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Allingham MJ, van Buul JD, Burridge K. ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J Immunol. 2007;179(6):4053–64.PubMedCrossRefGoogle Scholar
  122. 122.
    Kang I, Wang Q, Eppell SJ, Marchant RE, Doerschuk CM. Effect of neutrophil adhesion on the mechanical properties of lung microvascular endothelial cells. Am J Respir Cell Mol Biol. 2010;43(5):591–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Lessey-Morillon EC, Osborne LD, Monaghan-Benson E, Guilluy C, O'Brien ET, Superfine R, et al. The RhoA guanine nucleotide exchange factor, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration. J Immunol. 2014;192(7):3390–8.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Tasaka S, Koh H, Yamada W, Shimizu M, Ogawa Y, Hasegawa N, et al. Attenuation of endotoxin-induced acute lung injury by the Rho-associated kinase inhibitor, Y-27632. Am J Respir Cell Mol Biol. 2005;32(6):504–10.PubMedCrossRefGoogle Scholar
  125. 125.
    Watson RL, Buck J, Levin LR, Winger RC, Wang J, Arase H, et al. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration. J Exp Med. 2015;212(7):1021–41.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Wessel F, Winderlich M, Holm M, Frye M, Rivera-Galdos R, Vockel M, et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat Immunol. 2014;15(3):223–30.PubMedCrossRefGoogle Scholar
  127. 127.
    Vestweber D. Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Ann N Y Acad Sci. 2012;1257:184–92.PubMedCrossRefGoogle Scholar
  128. 128.
    Kaynar AM, Houghton AM, Lum EH, Pitt BR, Shapiro SD. Neutrophil elastase is needed for neutrophil emigration into lungs in ventilator-induced lung injury. Am J Respir Cell Mol Biol. 2008;39(1):53–60.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Mackarel AJ, Cottell DC, Russell KJ, FitzGerald MX, O'Connor CM. Migration of neutrophils across human pulmonary endothelial cells is not blocked by matrix metalloproteinase or serine protease inhibitors. Am J Respir Cell Mol Biol. 1999;20(6):1209–19.PubMedCrossRefGoogle Scholar
  130. 130.
    Huber AR, Weiss SJ. Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J Clin Invest. 1989;83(4):1122–36.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley TJ, Abraham SN, et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med. 1998;4(5):615–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Betsuyaku T, Shipley JM, Liu Z, Senior RM. Neutrophil emigration in the lungs, peritoneum, and skin does not require gelatinase B. Am J Respir Cell Mol Biol. 1999;20(6):1303–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Hirche TO, Atkinson JJ, Bahr S, Belaaouaj A. Deficiency in neutrophil elastase does not impair neutrophil recruitment to inflamed sites. Am J Respir Cell Mol Biol. 2004;30(4):576–84.PubMedCrossRefGoogle Scholar
  134. 134.
    Behzad AR, Chu F, Walker DC. Fibroblasts are in a position to provide directional information to migrating neutrophils during pneumonia in rabbit lungs. Microvasc Res. 1996;51(3):303–16.PubMedCrossRefGoogle Scholar
  135. 135.
    Burns AR, Simon SI, Kukielka GL, Rowen JL, Lu H, Mendoza LH, et al. Chemotactic factors stimulate CD18-dependent canine neutrophil adherence and motility on lung fibroblasts. J Immunol. 1996;156(9):3389–401.PubMedGoogle Scholar
  136. 136.
    Shang XZ, Issekutz AC. Beta 2 (CD18) and beta 1 (CD29) integrin mechanisms in migration of human polymorphonuclear leucocytes and monocytes through lung fibroblast barriers: shared and distinct mechanisms. Immunology. 1997;92(4):527–35.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Meng H, Marchese MJ, Garlick JA, Jelaska A, Korn JH, Gailit J, et al. Mast cells induce T-cell adhesion to human fibroblasts by regulating intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression. J Invest Dermatol. 1995;105(6):789–96.PubMedCrossRefGoogle Scholar
  138. 138.
    Burns JA, Issekutz TB, Yagita H, Issekutz AC. The alpha 4 beta 1 (very late antigen (VLA)-4, CD49d/CD29) and alpha 5 beta 1 (VLA-5, CD49e/CD29) integrins mediate beta 2 (CD11/CD18) integrin-independent neutrophil recruitment to endotoxin-induced lung inflammation. J Immunol. 2001;166(7):4644–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Ridger VC, Wagner BE, Wallace WA, Hellewell PG. Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation. J Immunol. 2001;166(5):3484–90.PubMedCrossRefGoogle Scholar
  140. 140.
    Damiano VV, Cohen A, Tsang AL, Batra G, Petersen R. A morphologic study of the influx of neutrophils into dog lung alveoli after lavage with sterile saline. Am J Pathol. 1980;100(2):349–64.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Zemans RL, Colgan SP, Downey GP. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol. 2009;40(5):519–35.PubMedCrossRefGoogle Scholar
  142. 142.
    Aurrand-Lions M, Lamagna C, Dangerfield JP, Wang S, Herrera P, Nourshargh S, et al. Junctional adhesion molecule-C regulates the early influx of leukocytes into tissues during inflammation. J Immunol. 2005;174(10):6406–15.PubMedCrossRefGoogle Scholar
  143. 143.
    Turner JR. “Putting the squeeze” on the tight junction: understanding cytoskeletal regulation. Semin Cell Dev Biol. 2000;11(4):301–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Jagels MA, Daffern PJ, Zuraw BL, Hugli TE. Mechanisms and regulation of polymorphonuclear leukocyte and eosinophil adherence to human airway epithelial cells. Am J Respir Cell Mol Biol. 1999;21(3):418–27.PubMedCrossRefGoogle Scholar
  145. 145.
    McDonald RJ, St George JA, Pan LC, Hyde DM. Neutrophil adherence to airway epithelium is reduced by antibodies to the leukocyte CD11/CD18 complex. Inflammation. 1993;17(2):145–51.PubMedCrossRefGoogle Scholar
  146. 146.
    Celi A, Cianchetti S, Petruzzelli S, Carnevali S, Baliva F, Giuntini C. ICAM-1-independent adhesion of neutrophils to phorbol ester-stimulated human airway epithelial cells. Am J Physiol. 1999;277(3 Pt 1):L465–71.PubMedGoogle Scholar
  147. 147.
    Tosi MF, Hamedani A, Brosovich J, Alpert SE. ICAM-1-independent, CD18-dependent adhesion between neutrophils and human airway epithelial cells exposed in vitro to ozone. J Immunol. 1994;152(4):1935–42.PubMedGoogle Scholar
  148. 148.
    Wang Q, Teder P, Judd NP, Noble PW, Doerschuk CM. CD44 deficiency leads to enhanced neutrophil migration and lung injury in Escherichia coli pneumonia in mice. Am J Pathol. 2002;161(6):2219–28.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Sundd P, Gutierrez E, Koltsova EK, Kuwano Y, Fukuda S, Pospieszalska MK, et al. “Slings” enable neutrophil rolling at high shear. Nature. 2012;488(7411):399–403.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Sundd P, Pospieszalska MK, Ley K. Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings. Mol Immunol. 2013;55(1):59–69.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations