Skip to main content

The Lung–Blood Interface

  • Chapter
  • First Online:
  • 869 Accesses

Part of the book series: Respiratory Medicine ((RM))

Abstract

The human lung is exquisitely structured to carry out the essential function of gas exchange. The architecture of the lung is characterized by generations of dichotomous branching airways and vessels resulting in the generation of an enormous total surface area for gas exchange. The extremely thin alveolar-capillary membrane is optimized for the transfer of oxygen from the airspaces to the blood compartment and the removal of carbon dioxide from the blood compartment to the airspaces. Majority of the surface area of the alveolar membrane consists of alveolar epithelial type 1 cells; however, alveolar surface tension and fluid homeostasis is maintained mainly by alveolar epithelial type 2 cells. The lung is constantly exposed to environmental particulate matters, antigens, aspirated particles, and inhaled microbial pathogens, but is protected by a complex immune defense mechanism comprised of the mucociliary clearance system, secreted molecules, recruited neutrophils, the mononuclear phagocyte system, dendritic cells, T cells, and B cells. However, the delicate structure of the lungs, evolutionarily designed to optimally serve the core function of gas exchange, predisposes the lungs to injury, and as presented in the following chapters, abnormalities of the hematologic system can lead to acute lung dysfunction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grippi MA. Fishman’s pulmonary diseases and disorders, vol. 5. New York: McGraw-Hill Education; 2015. p. 20–103.

    Google Scholar 

  2. West JB. Respiratory physiology—the essentials. 4th ed. Baltimore: Williams and Wilkins; 1990. p. 1–122.

    Google Scholar 

  3. Weibel ER. The pathway for oxygen: structure and function in the mammalian respiratory system. Cambridge, MA: Harvard University Press; 1984. p. 138–376.

    Google Scholar 

  4. Murray JF, Mason RJ. Murray and Nadel's textbook of respiratory medicine. 5th ed. Philadelphia, PA: Saunders/Elsevier; 2010. p. 1–132.

    Google Scholar 

  5. Weibel ER. Morphometry of the human lung. Berlin: Springer; 1963. p. 51–126.

    Book  Google Scholar 

  6. Zeman KL, Scheuch G, Sommerer K, Brown JS, Bennett WD. In vivo characterization of the transitional bronchioles by aerosol-derived airway morphometry. J Appl Physiol. 1999;87(3):920–7.

    CAS  PubMed  Google Scholar 

  7. Parent RA. Comparative biology of the normal lung. 2nd ed. Boston, MA: Elsevier; 2015. p. 21–49.

    Google Scholar 

  8. Haefeli-Bleuer B, Weibel ER. Morphometry of the human pulmonary acinus. Anat Rec. 1988;220(4):401–14.

    Article  CAS  PubMed  Google Scholar 

  9. Sapoval B, Filoche M, Weibel ER. Smaller is better—but not too small: a physical scale for the design of the mammalian pulmonary acinus. Proc Natl Acad Sci U S A. 2002;99(16):10411–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weibel ER, Sapoval B, Filoche M. Design of peripheral airways for efficient gas exchange. Respir Physiol Neurobiol. 2005;148(1–2):3–21.

    Article  PubMed  Google Scholar 

  11. Flenley DC, Downing I, Greening AP. The pathogenesis of emphysema. Bull Eur Physiopathol Respir. 1986;22(1):245s–52. Review.

    CAS  PubMed  Google Scholar 

  12. Weibel ER. Morphological basis of alveolar-capillary gas exchange. Physiol Rev. 1973;53(2):419–95. Review.

    CAS  PubMed  Google Scholar 

  13. Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol. 2012;2(1):675–709.

    PubMed  PubMed Central  Google Scholar 

  14. Reid L. Structural and functional reappraisal of the pulmonary artery system. Sci Basis Med Annu Rev. 1968:289–307.

    Google Scholar 

  15. McLaughlin RF, Tyler WS, Canada RO. A study of the subgross pulmonary anatomy in various mammals. Am J Anatomy. 1961;108(2):149–65.

    Article  Google Scholar 

  16. McLaughlin RFJ, Tyler WS, Canada RO. Subgross pulmonary anatomy of the rabbit, rat, and guinea pig, with additional notes on the human lung. Am Rev Respir Dis. 1966;94(3):380–7.

    PubMed  Google Scholar 

  17. Widdicombe J. Physiologic control Anatomy and physiology of the airway circulation. Am Rev Respir Dis. 1992;146(5 Pt 2):S3–7. Review.

    Article  CAS  PubMed  Google Scholar 

  18. Walker CM, Rosado-de-Christenson ML, Martinez-Jimenez S, Kunin JR, Wible BC. Bronchial arteries: anatomy, function, hypertrophy, and anomalies. Radiographics. 2015;35(1):32–49.

    Article  PubMed  Google Scholar 

  19. Wagenvoort CA, Wagenvoort N. Arterial anastomoses, bronchopulmonary arteries, and pulmobronchial arteries in perinatal lungs. Lab Invest. 1967;16(1):13–24.

    CAS  PubMed  Google Scholar 

  20. Endrys J, Hayat N, Cherian G. Comparison of bronchopulmonary collaterals and collateral blood flow in patients with chronic thromboembolic and primary pulmonary hypertension. Heart. 1997;78(2):171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ley S, Kreitner KF, Morgenstern I, Thelen M, Kauczor HU. Bronchopulmonary shunts in patients with chronic thromboembolic pulmonary hypertension: evaluation with helical CT and MR imaging. Am J Roentgenol. 2002;179(5):1209–15.

    Article  Google Scholar 

  22. Yeh HC, Schum GM. Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol. 1980;42(3):461–80.

    Article  CAS  PubMed  Google Scholar 

  23. Felici M, Filoche M, Sapoval B. Diffusional screening in the human pulmonary acinus. J Appl Physiol. 2003;94(5):2010–6.

    Article  CAS  PubMed  Google Scholar 

  24. Gehr P, Bachofen M, Weibel ER. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol. 1978;32(2):121–40.

    Article  CAS  PubMed  Google Scholar 

  25. Cotes JE. Lung function : assessment and application in medicine, Chapter 9. 1st ed. Oxford: Blackwell Scientific; 1965. p. 209–28.

    Google Scholar 

  26. Hughes JMB, Pride NB. Examination of the carbon monoxide diffusing capacity (DL(CO)) in relation to its KCO and VA components. Am J Respir Crit Care Med. 2012;186(2):132–9. Review.

    Article  PubMed  CAS  Google Scholar 

  27. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 7th ed. New York: W.H. Freeman; 2012.

    Google Scholar 

  28. Chanutin A, Curnish RR. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch Biochem Biophys. 1967;121(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  29. Mills FC, Johnson ML, Ackers GK. Oxygenation-linked subunit interactions in human hemoglobin: experimental studies on the concentration dependence of oxygenation curves. Biochemistry. 1976;15(24):5350–62.

    Article  CAS  PubMed  Google Scholar 

  30. Bunn HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med. 1997;337(11):762–9. Review.

    Article  CAS  PubMed  Google Scholar 

  31. Reid L, Meyrick B, Antony VB, Chang LY, Crapo JD, Reynolds HY. The mysterious pulmonary brush cell: a cell in search of a function. Am J Respir Crit Care Med. 2005;172(1):136–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Herzog EL, Brody AR, Colby TV, Mason R, Williams MC. Knowns and unknowns of the alveolus. Proc Am Thorac Soc. 2008;5(7):778–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. West JB. Fragility of pulmonary capillaries. J Appl Physiol. 2013;115(1):1–15.

    Article  PubMed  Google Scholar 

  34. Weibel ER. The mystery of “non-nucleated plates” in the alveolar epithelium of the lung explained. Acta Anat. 1971;78(3):425–43.

    Article  CAS  PubMed  Google Scholar 

  35. Mason RJ, Williams MC. Type II alveolar cell. Defender of the alveolus. Am Rev Respir Dis. 1977;115(6 Pt 2):81–91.

    CAS  PubMed  Google Scholar 

  36. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis. 1982;126(2):332–7.

    CAS  PubMed  Google Scholar 

  37. Bowden DH. Cell turnover in the lung. Am Rev Respir Dis. 1983;128(2 Pt 2):S46–8.

    CAS  PubMed  Google Scholar 

  38. Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res. 2001;2(1):33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adamson IY, Bowden DH. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest. 1974;30(1):35–42.

    CAS  PubMed  Google Scholar 

  40. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121(6):823–35.

    Article  CAS  PubMed  Google Scholar 

  41. Moodley Y. Evidence for human lung stem cells. N Engl J Med. 2011;365(5):464. author reply 5–6.

    Article  CAS  PubMed  Google Scholar 

  42. Guillot L, Nathan N, Tabary O, Thouvenin G, Le Rouzic P, Corvol H, et al. Alveolar epithelial cells: master regulators of lung homeostasis. Int J Biochem Cell Biol. 2013;45(11):2568–73.

    Article  CAS  PubMed  Google Scholar 

  43. Ochs M, Nenadic I, Fehrenbach A, Albes JM, Wahlers T, Richter J, et al. Ultrastructural alterations in intraalveolar surfactant subtypes after experimental ischemia and reperfusion. Am J Respir Crit Care Med. 1999;160(2):718–24.

    Article  CAS  PubMed  Google Scholar 

  44. Clements JA. Pulmonary edema and permeability of alveolar membranes. Arch Environ Health. 1961;2:280–3.

    Article  CAS  PubMed  Google Scholar 

  45. Hills BA. An alternative view of the role(s) of surfactant and the alveolar model. J Appl Physiol. 1999;87(5):1567–83.

    CAS  PubMed  Google Scholar 

  46. Stephens RH, Benjamin AR, Walters DV. Volume and protein concentration of epithelial lining liquid in perfused in situ postnatal sheep lungs. J Appl Physiol. 1996;80(6):1911–20.

    CAS  PubMed  Google Scholar 

  47. Eckenhoff RG, Somlyo AP. Rat lung type II cell and lamellar body: elemental composition in situ. Am J Physiol. 1988;254(5 Pt 1):C614–20.

    CAS  PubMed  Google Scholar 

  48. Ewenstein BM, Warhol MJ, Handin RI, Pober JS. Composition of the von Willebrand factor storage organelle (Weibel-Palade body) isolated from cultured human umbilical vein endothelial cells. J Cell Biol. 1987;104(5):1423–33.

    Article  CAS  PubMed  Google Scholar 

  49. Matthay MA. Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med. 2014;189(11):1301–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.

    Article  CAS  PubMed  Google Scholar 

  51. Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev. 2002;82(3):569–600.

    Article  CAS  PubMed  Google Scholar 

  52. Burns MW. Fertility, immotile cilia and chronic respiratory infections. Med J Aust. 1979;2(6):287–8.

    CAS  PubMed  Google Scholar 

  53. Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976;193(4250):317–9.

    Article  CAS  PubMed  Google Scholar 

  54. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.

    Article  CAS  PubMed  Google Scholar 

  55. Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol. 2015;16(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  56. Balhara J, Gounni AS. The alveolar macrophages in asthma: a double-edged sword. Mucosal Immunol. 2012;5(6):605–9.

    Article  CAS  PubMed  Google Scholar 

  57. Trapnell BC, Whitsett JA, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med. 2003;349(26):2527–39.

    Article  CAS  PubMed  Google Scholar 

  58. Westphalen K, Gusarova GA, Islam MN, Subramanian M, Cohen TS, Prince AS, et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature. 2014;506(7489):503–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA. Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol. 2005;32(3):177–84.

    Article  CAS  PubMed  Google Scholar 

  60. Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med. 2004;10(9):927–34.

    Article  CAS  PubMed  Google Scholar 

  61. Foo SY, Zhang V, Lalwani A, Lynch JP, Zhuang A, Lam CE, et al. Regulatory T cells prevent inducible BALT formation by dampening neutrophilic inflammation. J Immunol. 2015;194(9):4567–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by research funding from the National Heart, Lung and Blood Institute (Award Number: HL086884) and the National Institute for Allergy and Infectious Diseases (Award Number: AI119042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet S. Lee MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, P., Lee, J.S. (2017). The Lung–Blood Interface. In: Lee, J., Donahoe, M. (eds) Hematologic Abnormalities and Acute Lung Syndromes. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-41912-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41912-1_1

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-41910-7

  • Online ISBN: 978-3-319-41912-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics