Erratum to: L. Razdolsky, Probability Based High Temperature Engineering, https://doi.org/10.1007/978-3-319-41909-1_10

In the original version of the book, the following list of references have been included in the erratum chapter as a belated correction from author:

Chapter 1

1. Pg. 26 and Fig. 1.5

Razdolsky, Leo. “Probability Based Rheological Models of High Temperature Structural Creep”, AIAA SPACE 2014 Conference and Exposition, 2015

Chapter 2

1. Pgs. 58–59

Atkinson KE (1976) A survey of numerical methods for the solution of Fredholm integral equations of the second kind, SIAM

and

Baker CTH (1977) The numerical treatment of integral equations, Oxford University Press, Chap. 4

2. Pg. 67

V.I. Smirnov, “A course of higher mathematics”, 4, Addison-Wesley (1964) (Translated from Russian)

Chapter 3

1. Pgs. 102–106

www.me.umn.edu/labs/composites/Projects/

2. Pg. 106, Paragraph 3.2

academic.csuohio.edu/duffy_s/Linear_Visco.pdf

3. Pg. 107

Razdolsky, L., “High Temperature Creep and Structural Fire Resistance”, Structures Congress 2015, 2015

4. Pg. 109

academic.csuohio.edu/duffy_s/Linear_Visco.pdf David Roylance, ENGINEERING VISCOELASTICITY, 2001

5. Pg. 112

academic.csuohio.edu/duffy

6. Pg. 112

academic.csuohio.edu/duffy

7. Pgs. 112–113

www2.esc.auckland.ac.nz

8. Pg. 117

www.mate.tue.nl/mate/pdfs/4944.pdf Klompen, Edwin T.J. Mechanical properties of solid polymers

9. Pg. 118

http://ksuweb.kennesaw.edu/~plaval/math2203/jacobian.pdf

Chapter 4

1. Pgs. 162 & 174

http://courses.washington.edu/mengr354/jenkins/notes/chap8.pdf

2. Pg. 163

Holm Altenbach, Serge Kruch: Advanced Materials Modelling for Structures, Heidelberg, Springer-Verlag. 2013

3. Pg. 163

Konstantin Naumenko and Holm Altenbach: Modeling of Creep for Structural Analysis, Heidelberg, Springer-Verlag. 2007

4. Pg. 163

courses.washington.edu/me354a/chap8.pdf TIME DEPENDENT BEHAVIOUR: CREEP

5. Pg. 164

www.hep.caltech.edu/~fcp/math/integralEquations/integralEquations.pdf

6. Pg. 168

L. Razdolsky “Probability Based Rheological Models…” AIAA Space 2014

7. Pg. 176

extras.springer.com/2007/978-1-4020-6238-4/data/full_papers/220_Oh.pdf HIGH TEMPERATURE BEHAVIOR OF AL THIN FILM

8. Pg. 179

Sarkar A., and J.K. Chakravartty “prediction of Floww Stress..”, Journal of Materials… 2013

9. Pg. 231

L. Razdolsky “High Temperature Creep and Structural Fire Resistance”, Structures Congress 2015, 2015

Chapter 6

1. Pg. 391

aeweb.tamu.edu/haisler/engr214/Word_Lecture_Notes_by_Chapter/chapter9.doc

2. Pg. 394

https://www.coursehero.com › Rutgers › ENG MECH › ENG MECH 407

Chapter 8

1. Pg. 520

Ana Fernandez, H.-U. Künzi, A. Athanasiou Ioannou, L. Michelet and A. Rossoll: Lab course on Deformation and Fracture–Creep Test 2014. http://lmm.epfl.ch/files/content/sites/lmm/files/shared/TPDefRupt2014/TPDefFract14_Creep.pdf

2. Pg. 523

K. W. Poh STRESS-STRAIN-TEMPERATURE RELATIONSHIP FOR STRUCTURAL STEEL. http://www.egr.msu.edu/firestruct/Fire%20Research%20PhD/Stress%20Strain%20Temperature%20Relationship%20for%20Steel%20by%20Poh.pdf

Chapter 9

1. Pg. 581

Boyle, J.T.: The creep behavior of simple structures with a stress range dependent constitutive model. https://pure.strath.ac.uk/portal/files/4531224/Boyle_JT_Pure_The_creep_behaviour_of_simple_structures…_constitutive_model_Jun_2011.pdf

2. Pgs. 636 & 637

Salih N. Akour and Hussein Z. Maaitah “Effect of Core Material Stiffness on Sandwich Panel Behavior Beyond the Yield Limit.” Proceedings of the World Congress on Engineering 2010 Vol II WCE 2010, June 30–July 2, 2010, London, U.K

3. Pg. 638

American Society of Testing and Materials. ASTM Standard Terminology of Structural Sandwich Constructions (C274-99). West Conshohocken, PA: ASTM International 1999

4. Pg. 638

Fagerberg, Linus. (2003). Wrinkling in sandwich panels for marine applications.KTH Royal Institute of Technology. https://www.researchgate.net/publication/228891097_Wrinkling_in_sandwich_panels_for_marine_applications