Skip to main content

Sarcomas More Common in Children

  • Chapter
  • First Online:
Management of Soft Tissue Sarcoma

Abstract

Several types of sarcomas are more common in children, the most common of which include osteogenic sarcoma, Ewing sarcoma, rhabdomyosarcoma, and mesenchymal chondrosarcoma. While osteogenic sarcoma presents similarly in children and adults under age 40, there are a variety of differences in the presentation of Ewing sarcoma in adults versus pediatric patients. Ewing sarcoma is predominantly a bone tumor in children, while in adults it occurs much more commonly in soft tissue. As is also noted below, there is a new class of sarcomas that are similar in appearance to Ewing sarcoma, but contain genetic alterations other than the classic t(11;22) translocation (resulting in EWSR1-FLI1 fusion). Pleomorphic rhabdomyosarcoma is much more common in adults than in children, while alveolar rhabdomyosarcoma are rare in adults. The clinical presentation of mesenchymal chondrosarcoma appears similar in pediatric and adult age groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ewing J. Diffuse endothelioma of bone. Proc New York Pathol Soc. 1921;21:17–24.

    Google Scholar 

  2. Antonescu CR, Dal Cin P, Nafa K, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer. 2007;46:1051–60.

    Article  CAS  PubMed  Google Scholar 

  3. Antonescu CR, Zhang L, Chang NE, et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer. 2010;49:1114–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stuart-Harris R, Wills EJ, Philips J, et al. Extraskeletal Ewing’s sarcoma: a clinical, morphological and ultrastructural analysis of five cases with a review of the literature. Eur J Cancer Clin Oncol. 1986;22:393–400.

    Article  CAS  PubMed  Google Scholar 

  5. de Alava E, Kawai A, Healey JH, et al. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J Clin Oncol. 1998;16:1248–55.

    PubMed  Google Scholar 

  6. Le Deley MC, Delattre O, Schaefer KL, et al. Impact of EWS-ETS fusion type on disease progression in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol. 2010;28:1982–8.

    Article  PubMed  CAS  Google Scholar 

  7. Lee J, Hoang BH, Ziogas A, et al. Analysis of prognostic factors in Ewing sarcoma using a population-based cancer registry. Cancer. 2010;116:1964–73.

    Article  PubMed  Google Scholar 

  8. Huang HY, Illei PB, Zhao Z, et al. Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J Clin Oncol. 2005;23:548–58.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshimoto M, Graham C, Chilton-MacNeill S, et al. Detailed cytogenetic and array analysis of pediatric primitive sarcomas reveals a recurrent CIC-DUX4 fusion gene event. Cancer Genet Cytogenet. 2009;195:1–11.

    Article  CAS  PubMed  Google Scholar 

  10. Kawamura-Saito M, Yamazaki Y, Kaneko K, et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15:2125–37.

    Article  CAS  PubMed  Google Scholar 

  11. Italiano A, Sung YS, Zhang L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012;51:207–18.

    Article  CAS  PubMed  Google Scholar 

  12. Bayani J, Marrano P, Graham C, et al. Genomic instability and copy-number heterogeneity of chromosome 19q, including the kallikrein locus, in ovarian carcinomas. Mol Oncol. 2011;5:48–60.

    Article  CAS  PubMed  Google Scholar 

  13. Brohl AS, Solomon DA, Chang W, et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014;10:e1004475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Applebaum MA, Worch J, Matthay KK, et al. Clinical features and outcomes in patients with extraskeletal Ewing sarcoma. Cancer. 2011;117:3027–32.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Worch J, Matthay KK, Neuhaus J, et al. Ethnic and racial differences in patients with Ewing sarcoma. Cancer. 2010;116:983–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Casey DL, Meyers PA, Alektiar KM, et al. Ewing sarcoma in adults treated with modern radiotherapy techniques. Radiother Oncol. 2014;113:248–53.

    Article  PubMed  Google Scholar 

  17. Holcomb TM, Haggard ME, Windmiller J. Cyclophosphamide (Nsc-26271)-1 in uncommon malignant neoplasms in children. Cancer Chemother Rep. 1964;36:73–5.

    CAS  PubMed  Google Scholar 

  18. Oldham RK, Pomeroy TC. Treatment of Ewing’s sarcoma with adriamycin (NSC-123127). Cancer Chemother Rep. 1972;56:635–9.

    CAS  PubMed  Google Scholar 

  19. Nesbit Jr ME, Gehan EA, Burgert Jr EO, et al. Multimodal therapy for the management of primary, nonmetastatic Ewing’s sarcoma of bone: a long-term follow-up of the First Intergroup study. J Clin Oncol. 1990;8:1664–74.

    PubMed  Google Scholar 

  20. Burgert Jr EO, Nesbit ME, Garnsey LA, et al. Multimodal therapy for the management of nonpelvic, localized Ewing’s sarcoma of bone: intergroup study IESS-II. J Clin Oncol. 1990;8:1514–24.

    PubMed  Google Scholar 

  21. Paulussen M, Ahrens S, Dunst J, et al. Localized Ewing tumor of bone: final results of the cooperative Ewing’s Sarcoma Study CESS 86. J Clin Oncol. 2001;19:1818–29.

    CAS  PubMed  Google Scholar 

  22. Paulussen M, Craft AW, Lewis I, et al. Results of the EICESS-92 study: two randomized trials of Ewing’s sarcoma treatment—cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol. 2008;26:4385–93.

    Article  CAS  PubMed  Google Scholar 

  23. Grier HE, Krailo MD, Tarbell NJ, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med. 2003;348:694–701.

    Article  CAS  PubMed  Google Scholar 

  24. Granowetter L, Womer R, Devidas M, et al. Dose-intensified compared with standard chemotherapy for nonmetastatic Ewing sarcoma family of tumors: a Children’s Oncology Group Study. J Clin Oncol. 2009;27:2536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Womer RB, West DC, Krailo MD, et al. Randomized comparison of every-two-week v. every-three-week chemotherapy in Ewing sarcoma family tumors. J Clin Oncol. 2008;26:Abstr 10504.

    Google Scholar 

  26. Norton L, Simon R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep. 1977;61:1307–17.

    CAS  PubMed  Google Scholar 

  27. Norton L, Simon R, Brereton HD, et al. Predicting the course of Gompertzian growth. Nature. 1976;264:542–5.

    Article  CAS  PubMed  Google Scholar 

  28. Kushner BH, Meyers PA. How effective is dose-intensive/myeloablative therapy against Ewing’s sarcoma/primitive neuroectodermal tumor metastatic to bone or bone marrow? The Memorial Sloan-Kettering experience and a literature review. J Clin Oncol. 2001;19:870–80.

    CAS  PubMed  Google Scholar 

  29. McTiernan AM, Cassoni AM, Driver D, et al. Improving outcomes after relapse in Ewing’s sarcoma: analysis of 114 patients from a single institution. Sarcoma. 2006;2006:83548.

    PubMed  PubMed Central  Google Scholar 

  30. Oberlin O, Rey A, Desfachelles AS, et al. Impact of high-dose busulfan plus melphalan as consolidation in metastatic Ewing tumors: a study by the Societe Francaise des Cancers de l’Enfant. J Clin Oncol. 2006;24:3997–4002.

    Article  CAS  PubMed  Google Scholar 

  31. Ferrari S, Alvegard T, Luksch R, et al. Non-metastatic Ewing’s family tumors: high-dose chemotherapy with stem cell rescue in poor responder patients. Preliminary results of the Italian/Scandinavian ISG/SSG III protocol. J Clin Oncol. 2007;25:Abstr 10014.

    Google Scholar 

  32. Strauss SJ, McTiernan A, Driver D, et al. Single center experience of a new intensive induction therapy for Ewing’s family of tumors: feasibility, toxicity, and stem cell mobilization properties. J Clin Oncol. 2003;21:2974–81.

    Article  CAS  PubMed  Google Scholar 

  33. Wagner LM, McAllister N, Goldsby RE, et al. Temozolomide and intravenous irinotecan for treatment of advanced Ewing sarcoma. Pediatr Blood Cancer. 2007;48:132–9.

    Article  PubMed  Google Scholar 

  34. Bomgaars LR, Bernstein M, Krailo M, et al. Phase II trial of irinotecan in children with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol. 2007;25:4622–7.

    Article  CAS  PubMed  Google Scholar 

  35. Vassal G, Couanet D, Stockdale E, et al. Phase II trial of irinotecan in children with relapsed or refractory rhabdomyosarcoma: a joint study of the French Society of Pediatric Oncology and the United Kingdom Children’s Cancer Study Group. J Clin Oncol. 2007;25:356–61.

    Article  CAS  PubMed  Google Scholar 

  36. Bisogno G, Riccardi R, Ruggiero A, et al. Phase II study of a protracted irinotecan schedule in children with refractory or recurrent soft tissue sarcoma. Cancer. 2006;106:703–7.

    Article  CAS  PubMed  Google Scholar 

  37. Bernstein M, Kovar H, Paulussen M, et al. Ewing’s sarcoma family of tumors: current management. Oncologist. 2006;11:503–19.

    Article  CAS  PubMed  Google Scholar 

  38. Walterhouse DO, Lyden ER, Breitfeld PP, et al. Efficacy of topotecan and cyclophosphamide given in a phase II window trial in children with newly diagnosed metastatic rhabdomyosarcoma: a Children’s Oncology Group study. J Clin Oncol. 2004;22:1398–403.

    Article  CAS  PubMed  Google Scholar 

  39. Saylors 3rd RL, Stine KC, Sullivan J, et al. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group phase II study. J Clin Oncol. 2001;19:3463–9.

    CAS  PubMed  Google Scholar 

  40. Saylors 3rd RL, Stewart CF, Zamboni WC, et al. Phase I study of topotecan in combination with cyclophosphamide in pediatric patients with malignant solid tumors: a Pediatric Oncology Group Study. J Clin Oncol. 1998;16:945–52.

    CAS  PubMed  Google Scholar 

  41. Tolcher AW, Sarantopoulos J, Patnaik A, et al. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol. 2009;27:5800–7.

    Article  CAS  PubMed  Google Scholar 

  42. Olmos D, Postel-Vinay S, Molife LR, et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing’s sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 2010;11:129–35.

    Article  CAS  PubMed  Google Scholar 

  43. Pappo AS, Patel SR, Crowley J, et al. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study. J Clin Oncol. 2011;29:4541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Juergens H, Daw NC, Geoerger B, et al. Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. J Clin Oncol. 2011;29:4534–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Malempati S, Weigel B, Ingle AM, et al. Phase I/II trial and pharmacokinetic study of cixutumumab in pediatric patients with refractory solid tumors and Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:256–62.

    Article  CAS  PubMed  Google Scholar 

  46. Tap WD, Demetri G, Barnette P, et al. Phase II study of ganitumab, a fully human anti-type-1 insulin-like growth factor receptor antibody, in patients with metastatic Ewing family tumors or desmoplastic small round cell tumors. J Clin Oncol. 2012;30(15):1849–56.

    Article  CAS  PubMed  Google Scholar 

  47. Chugh R, Wathen JK, Maki RG, et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a Bayesian hierarchical statistical model. J Clin Oncol. 2009;27:3148–53.

    Article  CAS  PubMed  Google Scholar 

  48. Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brenner JC, Feng FY, Han S, et al. PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res. 2012;72:1608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choy E, Butrynski J, Harmon D, et al. Phase II study of olaparib in patients with refractory Ewing sarcoma following failure of standard chemotherapy. BMC Cancer. 2014;14:813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Bennani-Baiti IM, Machado I, Llombart-Bosch A, et al. Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing’s sarcoma, osteosarcoma, and rhabdomyosarcoma. Hum Pathol. 2012;43:1300–7.

    Article  CAS  PubMed  Google Scholar 

  52. Sankar S, Theisen ER, Bearss J, et al. Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin Cancer Res. 2014;20:4584–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grohar PJ, Woldemichael GM, Griffin LB, et al. Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening. J Natl Cancer Inst. 2011;103:962–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Richkind KE, Romansky SG, Finklestein JZ. t(4;19)(q35;q13.1): a recurrent change in primitive mesenchymal tumors? Cancer Genet Cytogenet. 1996;87:71–4.

    Article  CAS  PubMed  Google Scholar 

  55. Graham C, Chilton-Macneill S, Zielenska M, et al. The CIC-DUX4 fusion transcript is present in a subgroup of pediatric primitive round cell sarcomas. Hum Pathol. 2011;43:180–9.

    Article  PubMed  CAS  Google Scholar 

  56. Rakheja D, Goldman S, Wilson KS, et al. Translocation (4;19)(q35;q13.1)-associated primitive round cell sarcoma: report of a case and review of the literature. Pediatr Dev Pathol. 2008;11:239–44.

    Article  PubMed  Google Scholar 

  57. Alaggio R, Bisogno G, Rosato A, et al. Undifferentiated sarcoma: does it exist? A clinicopathologic study of 7 pediatric cases and review of literature. Hum Pathol. 2009;40:1600–10.

    Article  PubMed  Google Scholar 

  58. Sirvent N, Trassard M, Ebran N, et al. Fusion of EWSR1 with the DUX4 facioscapulohumeral muscular dystrophy region resulting from t(4;22)(q35;q12) in a case of embryonal rhabdomyosarcoma. Cancer Genet Cytogenet. 2009;195:12–8.

    Article  CAS  PubMed  Google Scholar 

  59. Roberts P, Browne CF, Lewis IJ, et al. 12q13 abnormality in rhabdomyosarcoma. A nonrandom occurrence? Cancer Genet Cytogenet. 1992;60:135–40.

    Article  CAS  PubMed  Google Scholar 

  60. Riccardi GF, Stein C, de la Roza G, et al. Newly described translocation (18;19)(q23;q13.2) in abdominal wall soft-tissue tumor resembling Ewing sarcoma/primitive neuroectodermal tumor. Cancer Genet Cytogenet. 2010;201:1–5.

    Article  CAS  PubMed  Google Scholar 

  61. Pierron G, Tirode F, Lucchesi C, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet. 2012;44:461–6.

    Article  CAS  PubMed  Google Scholar 

  62. Lemmers RJ, van der Vliet PJ, Klooster R, et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science. 2010;329:1650–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ragab AH, Heyn R, Tefft M, et al. Infants younger than 1 year of age with rhabdomyosarcoma. Cancer. 1986;58:2606–10.

    Article  CAS  PubMed  Google Scholar 

  64. Hayes-Jordan A, Andrassy R. Rhabdomyosarcoma in children. Curr Opin Pediatr. 2009;21:373–8.

    Article  PubMed  Google Scholar 

  65. Newton Jr WA, Soule EH, Hamoudi AB, et al. Histopathology of childhood sarcomas, Intergroup Rhabdomyosarcoma Studies I and II: clinicopathologic correlation. J Clin Oncol. 1988;6:67–75.

    PubMed  Google Scholar 

  66. Turc-Carel C, Lizard-Nacol S, Justrabo E, et al. Consistent chromosomal translocation in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet. 1986;19:361–2.

    Article  CAS  PubMed  Google Scholar 

  67. Douglass EC, Valentine M, Etcubanas E, et al. A specific chromosomal abnormality in rhabdomyosarcoma. Cytogenet Cell Genet. 1987;45:148–55.

    Article  CAS  PubMed  Google Scholar 

  68. Biegel JA, Meek RS, Parmiter AH, et al. Chromosomal translocation t(1;13)(p36;q14) in a case of rhabdomyosarcoma. Genes Chromosomes Cancer. 1991;3:483–4.

    Article  CAS  PubMed  Google Scholar 

  69. Gallego Melcon S, Sanchez de Toledo Codina J. Molecular biology of rhabdomyosarcoma. Clin Transl Oncol. 2007;9:415–9.

    Article  CAS  PubMed  Google Scholar 

  70. Davicioni E, Anderson MJ, Finckenstein FG, et al. Molecular classification of rhabdomyosarcoma—genotypic and phenotypic determinants of diagnosis: a report from the Children’s Oncology Group. Am J Pathol. 2009;174:550–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sabbioni S, Veronese A, Trubia M, et al. Exon structure and promoter identification of STIM1 (alias GOK), a human gene causing growth arrest of the human tumor cell lines G401 and RD. Cytogenet Cell Genet. 1999;86:214–8.

    Article  CAS  PubMed  Google Scholar 

  72. Hu RJ, Lee MP, Connors TD, et al. A 2.5-Mb transcript map of a tumor-suppressing subchromosomal transferable fragment from 11p15.5, and isolation and sequence analysis of three novel genes. Genomics. 1997;46:9–17.

    Article  CAS  PubMed  Google Scholar 

  73. Sabbioni S, Barbanti-Brodano G, Croce CM, et al. GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res. 1997;57:4493–7.

    CAS  PubMed  Google Scholar 

  74. Alaggio R, Zhang L, Sung YS, et al. A molecular study of pediatric spindle and sclerosing rhabdomyosarcoma: identification of novel and recurrent VGLL2-related fusions in infantile cases. Am J Surg Pathol. 2016;40:224–35.

    PubMed  Google Scholar 

  75. Shern JF, Chen L, Chmielecki J, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014;4:216–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sutow WW, Sullivan MP, Ried HL, et al. Prognosis in childhood rhabdomyosarcoma. Cancer. 1970;25:1384–90.

    Article  CAS  PubMed  Google Scholar 

  77. Sutow WW, Sullivan MP. Successful chemotherapy for childhood rhabdomyosarcoma. Tex Med. 1970;66:78–81.

    CAS  PubMed  Google Scholar 

  78. Wolden SL, Alektiar KM. Sarcomas across the age spectrum. Semin Radiat Oncol. 2010;20:45–51.

    Article  PubMed  Google Scholar 

  79. Crist W, Gehan EA, Ragab AH, et al. The Third Intergroup Rhabdomyosarcoma Study. J Clin Oncol. 1995;13:610–30.

    CAS  PubMed  Google Scholar 

  80. Crist WM, Anderson JR, Meza JL, et al. Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J Clin Oncol. 2001;19:3091–102.

    CAS  PubMed  Google Scholar 

  81. Maurer HM, Beltangady M, Gehan EA, et al. The Intergroup Rhabdomyosarcoma Study-I. A final report. Cancer. 1988;61:209–20.

    Article  CAS  PubMed  Google Scholar 

  82. Maurer HM, Gehan EA, Beltangady M, et al. The Intergroup Rhabdomyosarcoma Study-II. Cancer. 1993;71:1904–22.

    Article  CAS  PubMed  Google Scholar 

  83. Arndt CA, Stoner JA, Hawkins DS, et al. Vincristine, actinomycin, and cyclophosphamide compared with vincristine, actinomycin, and cyclophosphamide alternating with vincristine, topotecan, and cyclophosphamide for intermediate-risk rhabdomyosarcoma: children’s oncology group study D9803. J Clin Oncol. 2009;27:5182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maurer HM. The Intergroup Rhabdomyosarcoma Study II: objectives and study design. J Pediatr Surg. 1980;15:371–2.

    Article  CAS  PubMed  Google Scholar 

  85. Beverly Raney R, Walterhouse DO, Meza JL, et al. Results of the Intergroup Rhabdomyosarcoma Study Group D9602 protocol, using vincristine and dactinomycin with or without cyclophosphamide and radiation therapy, for newly diagnosed patients with low-risk embryonal rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. J Clin Oncol. 2011;29:1312–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gerber NK, Wexler LH, Singer S, et al. Adult rhabdomyosarcoma survival improived with treatment on multimodality protocols. Int J Radiat Oncol Biol Phys. 2013;86:58–63.

    Google Scholar 

  87. Blaney SM, Needle MN, Gillespie A, et al. Phase II trial of topotecan administered as 72-hour continuous infusion in children with refractory solid tumors: a collaborative Pediatric Branch, National Cancer Institute, and Children’s Cancer Group Study. Clin Cancer Res. 1998;4:357–60.

    CAS  PubMed  Google Scholar 

  88. Lager JJ, Lyden ER, Anderson JR, et al. Pooled analysis of phase II window studies in children with contemporary high-risk metastatic rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. J Clin Oncol. 2006;24:3415–22.

    Article  PubMed  Google Scholar 

  89. Nitschke R, Parkhurst J, Sullivan J, et al. Topotecan in pediatric patients with recurrent and progressive solid tumors: a Pediatric Oncology Group phase II study. J Pediatr Hematol Oncol. 1998;20:315–8.

    Article  CAS  PubMed  Google Scholar 

  90. Pappo AS, Lyden E, Breneman J, et al. Up-front window trial of topotecan in previously untreated children and adolescents with metastatic rhabdomyosarcoma: an intergroup rhabdomyosarcoma study. J Clin Oncol. 2001;19:213–9.

    CAS  PubMed  Google Scholar 

  91. Cosetti M, Wexler LH, Calleja E, et al. Irinotecan for pediatric solid tumors: the Memorial Sloan-Kettering experience. J Pediatr Hematol Oncol. 2002;24:101–5.

    Article  PubMed  Google Scholar 

  92. Pappo AS, Lyden E, Breitfeld P, et al. Two consecutive phase II window trials of irinotecan alone or in combination with vincristine for the treatment of metastatic rhabdomyosarcoma: the Children’s Oncology Group. J Clin Oncol. 2007;25:362–9.

    Article  CAS  PubMed  Google Scholar 

  93. Maki RG, Wathen JK, Patel SR, et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: results of sarcoma alliance for research through collaboration study 002 [corrected]. J Clin Oncol. 2007;25:2755–63.

    Article  CAS  PubMed  Google Scholar 

  94. Wagner-Bohn A, Paulussen M, Vieira Pinheiro JP, et al. Phase II study of gemcitabine in children with solid tumors of mesenchymal and embryonic origin. Anticancer Drugs. 2006;17:859–64.

    Article  CAS  PubMed  Google Scholar 

  95. Minniti CP, Helman LJ. IGF-II in the pathogenesis of rhabdomyosarcoma: a prototype of IGFs involvement in human tumorigenesis. Adv Exp Med Biol. 1993;343:327–43.

    Article  CAS  PubMed  Google Scholar 

  96. LeRoith D, Werner H, Neuenschwander S, et al. The role of the insulin-like growth factor-I receptor in cancer. Ann N Y Acad Sci. 1995;766:402–8.

    Article  CAS  PubMed  Google Scholar 

  97. Kalebic T, Blakesley V, Slade C, et al. Expression of a kinase-deficient IGF-I-R suppresses tumorigenicity of rhabdomyosarcoma cells constitutively expressing a wild type IGF-I-R. Int J Cancer. 1998;76:223–7.

    Article  CAS  PubMed  Google Scholar 

  98. Wan X, Harkavy B, Shen N, et al. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007;26:1932–40.

    Article  CAS  PubMed  Google Scholar 

  99. Cao L, Yu Y, Darko I, et al. Addiction to elevated insulin-like growth factor I receptor and initial modulation of the AKT pathway define the responsiveness of rhabdomyosarcoma to the targeting antibody. Cancer Res. 2008;68:8039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rikhof B, de Jong S, Suurmeijer AJ, et al. The insulin-like growth factor system and sarcomas. J Pathol. 2009;217:469–82.

    Article  CAS  PubMed  Google Scholar 

  101. Patel S, Pappo A, Crowley J, et al. A SARC global collaborative phase II trial of R1507, a recombinant human monoclonal antibody to the insulin-like growth factor-1 receptor in patients with recurrent or refractory sarcomas. J Clin Oncol 2009;27:Abstract 10503.

    Google Scholar 

  102. Wagner LM, Fouladi M, Ahmed A, et al. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015;62:440–4.

    Article  CAS  PubMed  Google Scholar 

  103. Mayeenuddin LH, Yu Y, Kang Z, et al. Insulin-like growth factor 1 receptor antibody induces rhabdomyosarcoma cell death via a process involving AKT and Bcl-x(L). Oncogene. 2010;29:6367–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang F, Greer A, Hurlburt W, et al. The mechanisms of differential sensitivity to an insulin-like growth factor-1 receptor inhibitor (BMS-536924) and rationale for combining with EGFR/HER2 inhibitors. Cancer Res. 2009;69:161–70.

    Article  CAS  PubMed  Google Scholar 

  105. Soundararajan A, Abraham J, Nelon LD, et al. 18F-FDG microPET imaging detects early transient response to an IGF1R inhibitor in genetically engineered rhabdomyosarcoma models. Pediatr Blood Cancer. 2012;59:485–92.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kawai A, Araki N, Sugiura H, et al. Trabectedin monotherapy after standard chemotherapy versus best supportive care in patients with advanced, translocation-related sarcoma: a randomised, open-label, phase 2 study. Lancet Oncol. 2015;16:406–16.

    Article  CAS  PubMed  Google Scholar 

  107. Dahlin DC, Henderson ED. Mesenchymal chondrosarcoma. Further observations on a new entity. Cancer. 1962;15:410–7.

    Article  CAS  PubMed  Google Scholar 

  108. Huvos AG, Rosen G, Dabska M, et al. Mesenchymal chondrosarcoma. A clinicopathologic analysis of 35 patients with emphasis on treatment. Cancer. 1983;51:1230–7.

    Article  CAS  PubMed  Google Scholar 

  109. Nicol K, Savell V, Moore J, et al. Distinguishing undifferentiated embryonal sarcoma of the liver from biliary tract rhabdomyosarcoma: a Children’s Oncology Group study. Pediatr Dev Pathol. 2007;10:89–97.

    Article  PubMed  Google Scholar 

  110. Stocker JT, Ishak KG. Undifferentiated (embryonal) sarcoma of the liver: report of 31 cases. Cancer. 1978;42:336–48.

    Article  CAS  PubMed  Google Scholar 

  111. Kim DY, Kim KH, Jung SE, et al. Undifferentiated (embryonal) sarcoma of the liver: combination treatment by surgery and chemotherapy. J Pediatr Surg. 2002;37:1419–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brennan, M.F., Antonescu, C.R., Alektiar, K.M., Maki, R.G. (2016). Sarcomas More Common in Children. In: Management of Soft Tissue Sarcoma. Springer, Cham. https://doi.org/10.1007/978-3-319-41906-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41906-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41904-6

  • Online ISBN: 978-3-319-41906-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics