Skip to main content

Fatigue Crack Growth Behaviour of Epoxy Nanocomposites—Influence of Particle Geometry

  • Chapter
  • First Online:
  • 2436 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 247))

Abstract

In this study, surface-modified spherical nano-silica and K-fluoro hectorites (O/K-hect), characterised by large lateral extensions and aspect ratios, were employed to analyse the effect of geometrical appearance on the fatigue crack growth (FCP) behaviour of an epoxy resin. The addition of nano-silica improved the FCP behaviour by nanoparticle debonding and subsequent plastic void growth. The number of particles contributing to toughening increases remarkably with rising stress intensity factor due to plastic zone enlargement. The improvement in crack propagation resistance by the use of the large O/K-hect, even at very low amounts (2.2 vol%) has to be highlighted. The main toughening mechanism is crack deflection due to the large lateral extension being in the range of the plastic zone size. Especially in the region of crack initiation and stable crack propagation, the clay tactoids reduce the propagation of the damage zone in front of the crack tip remarkably, resulting in a hugely enhanced crack resistance of the nanocomposites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85, 528–533 (1963)

    Article  Google Scholar 

  2. Fischer, F., Beier, U., Wolff-Fabris, F., Altstädt, V.: Toughened high performance epoxy resin system for aerospace applications. Sci. Eng. Compos. Mater. 18, 209–215 (2011)

    Article  Google Scholar 

  3. Kinloch, A.J., Young, R.J. (eds.): Fracture Behaviour of Polymers. Applied Science Publishers, London (1983)

    Google Scholar 

  4. Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C., Sprenger, S.: Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48, 530–541 (2007)

    Article  Google Scholar 

  5. Möller, M.W., Handge, U.A., Kunz, D.A., Lunkenbein, T., Altstädt, V., Breu, J.: Tailoring shear-stiff, mica-like nanoplatelets. ACS Nano 4, 717–724 (2010)

    Article  Google Scholar 

  6. Kothmann, M.H., Zeiler, R., Rios de Anda, A., Brückner, A., Altstädt, V.: Fatigue crack propagation behaviour of epoxy resins modified with silica-nanoparticles. Polymer 60, 157–163 (2015)

    Article  Google Scholar 

  7. Shi, H., Lan, T., Pinnavaia, T.J.: Interfacial effects on the reinforcement properties of polymer–organoclay nanocomposites. Chem. Mater. 8, 1584–1587 (1996)

    Article  Google Scholar 

  8. Kinloch, A.J., Taylor, A.C.: The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. J. Mater. Sci. 41, 3271–3297 (2006)

    Article  Google Scholar 

  9. Kornmann, X., Thomann, R., Mülhaupt, R., Finter, J., Berglund, L.: Synthesis of amine-cured, epoxy-layered silicate nanocomposites: the influence of the silicate surface modification on the properties. J. Appl. Polym. Sci. 86, 2643–2652 (2002)

    Article  Google Scholar 

  10. Dittanet, P., Pearson, R.A.: Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 53, 1890–1905 (2012)

    Article  Google Scholar 

  11. Zhang, H., Zhang, Z., Friedrich, K., Eger, C.: Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 54, 1833–1842 (2006)

    Article  Google Scholar 

  12. Blackman, B.R.K., Kinloch, A.J., Lee, J.S., Taylor, A.C., Agarwal, R., Schueneman, G., Sprenger, S.: The fracture and fatigue behaviour of nano-modified epoxy polymers. J. Mater. Sci. 42, 7049–7051 (2007)

    Article  Google Scholar 

  13. Hedicke-Höchstötter, K., Demchuk, V., Langenfelder, D., Altstädt, V.: Fatigue crack propagation behaviour of polyamide-6 nanocomposites based on layered silicates. J. Plast. Technol. 3, 1–22 (2007)

    Google Scholar 

  14. Tang, L.-C., Zhang, H., Sprenger, S., Ye, L., Zhang, Z.: Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles. Compos. Sci. Technol. 72, 558–565 (2012)

    Article  Google Scholar 

  15. Kalo, H., Möller, M.W., Ziadeh, M., Dolejš, D., Breu, J.: Large scale melt synthesis in an open crucible of Na-fluorohectorite with superb charge homogeneity and particle size. Appl. Clay Sci. 48, 39–45 (2010)

    Article  Google Scholar 

  16. Ammann, L., Bergaya, F., Lagaly, G.: Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Miner. 40, 441–453 (2005)

    Article  Google Scholar 

  17. Carrado, K.A., Decarreau, A., Petit, S., Bergaya, F., Lagaly, G.: Synthetic clay minerals and purification of natural clay. In: Bergaya, F., Theng, B.K.G., Lagaly, G. (eds.) Handbook of Clay Science, pp. 115–139. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  18. ISO 15850 (2014): Plastics––Determination of tension-tension fatigue crack propagation––Linear elastic fracture mechanics (LEFM) approach

    Google Scholar 

  19. Stefanescu, E.A., Tan, X., Lin, Z., Bowler, N., Kessler, M.R.: Multifunctional PMMA–ceramic composites as structural dielectrics. Polymer 51, 5823–5832 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge the financial support from the German Research Foundation in the frame of the Collaborative Research Center SFB 840: “From particulate nanosystems to mesotechnology”, and from the German Federal Ministry for Economic Affairs and Energy (FKZ 0327895E). The authors are grateful towards Mr. Brückner, Mrs. Lang, and Mrs. Förtsch, University of Bayreuth, for their support with the mechanical characterisation and microscopic investigations, respectively.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kothmann, M.H., Bakis, G., Zeiler, R., Ziadeh, M., Breu, J., Altstädt, V. (2017). Fatigue Crack Growth Behaviour of Epoxy Nanocomposites—Influence of Particle Geometry. In: Grellmann, W., Langer, B. (eds) Deformation and Fracture Behaviour of Polymer Materials. Springer Series in Materials Science, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-319-41879-7_2

Download citation

Publish with us

Policies and ethics