Influence of Welding and Composition on the Short-Term Stable Crack Propagation Through Polyolefin Single- and Bilayered Structures

  • R. Lach
  • T. Krolopp
  • P. Hutař
  • E. Nezbedová
  • W. Grellmann
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)


The overall stable crack initiation and propagation behaviour of fracture mechanics specimens cut from plastic pipes that were composed of different polyolefin materials were investigated using concepts of elastic–plastic fracture mechanics including the crack propagation kinetics. The effect of specimen shape, orientation, welding and lading rate on the crack resistance (R) behaviour of these materials has been thereby assessed. It was found in principle that specimen shape, orientation and welding have an influence indeed but only an unexpected small one on crack initiation behaviour and, particularly, on crack propagation behaviour. The crack initiation toughness is not sensitive to the orientation in most cases. In contrast, the crack propagation toughness is significantly affected by the orientation where the values for crack propagation in extrusion direction are larger than ones for crack propagation crosswise to that. This confirms that the morphology affects the stable crack propagation behaviour more than the stable crack initiation behaviour. In agreement with results of the microindentation test, fracture mechanics investigations also show that a lower welding pressure and a larger welding temperature, respectively, have no or a positive effect on the mechanical and fracture mechanics properties, whereas a larger pressure and a lower temperature, respectively, result in deterioration of the performance of the welded joint. Furthermore, the R-curve behaviour was investigated using specimens cut from bilayer pipe segments. It has been shown that an additional layer has a clear impact on the R-curve behaviour compared to the crack propagation in single-layer pipes, which can be explained thereby that the plastic constraint was affected by this additional layer. For clarification of the toughness-in- or -decreasing effect of an additional layer (with differing mechanical characteristics) on the layer where the crack was growing, R-curve ratios were introduced, that showed that the asymmetric mechanical properties of different layers were directly reflected in an asymmetric impact on the stable crack initiation and propagation behaviour.



W. Grellmann and R. Lach wish to thank the German Research Foundation (projects GR 1141/30-1, 31-1 and 32-1) and the German Academic Exchange Service (DAAD) (PPP 2004/2005) for financial support. Furthermore, they would like to acknowledge the Austrian Research Promotion Agency (FFG) for financial support of the project 832113 as part of the BRIDGE 1 program. P. Hutař wishes to thank the Czech Science Foundation (GACR) for supporting this study through the projects 101/09/J027 and P108/12/1560.


  1. 1.
    Hessel, J.: 100 Jahre Nutzungsdauer von Rohren aus Polyethylen. Rückblick und Perspektive. 3R Int. 46, 242–246 (2007); Hessel, J.: 50 Jahre Rohre aus Polyethylen—Eine ingenieurtechnische Betrachtung. 3R Int. 45, 128–133 (2006)Google Scholar
  2. 2.
    DVS-Taschenbuch.: Fachbuchreihe Schweißtechnik, vol. 68/IV, 15th edn. Verlag für Schweißen und verwandte Verfahren (DVS-Verlag), Düsseldorf (2014)Google Scholar
  3. 3.
    Neumann, J.A., Bockhoff, F.J.: Welding of Plastics. Literary Licensing LLC, Whitefish (2013)Google Scholar
  4. 4.
    Lach, R., Grellmann, W., Knesl, Z., Hutař, P., Nezbedová, E., Bierögel, C.: Verfahren zur Bewertung der lokalen mechanischen Kurzzeiteigenschaften von Schweißnähten in PE 100-Rohren. Joining Plastics—Fügen von Kunststoffen 6, pp. 126–133 (2012)Google Scholar
  5. 5.
    Krolopp, T.: Einfluss der Prüfkörperform, der Orientierung und der Schweißung auf das stabile Rissausbreitungsverhalten des Rohrwerkstoffs PE 100 unter quasistatischen Beanspruchungsbedingungen. Diploma thesis, Martin Luther University Halle-Wittenberg, Halle/Saale (2011)Google Scholar
  6. 6.
    Grellmann, W., Seidler, S. (eds.): Deformation and Fracture Behaviour of Polymers. Springer, Berlin (2001)Google Scholar
  7. 7.
    Lach, R., Hutař, P., Vesely, P., Nezbedová, E., Knesl, Z., Koch, T., Bierögel, C., Grellmann, W.: Assessment with indentation techniques of the local mechanical behavior of joints in polymer parts. Polimery 58, 900–905 (2013)CrossRefGoogle Scholar
  8. 8.
    Hashemi, S., Williams, J.G.: The effects of specimen configuration and notch tip radius on the fracture-toughness of polymers using J C. Plast. Rubber Process. Appl. 6, 363–375 (1986)Google Scholar
  9. 9.
    Jayadevan, K.R., Narasimhan, R., Ramamurthy, T.S., Dattaguru, B.: Effect of T-stress and loading rate on crack initiation in rate sensitive plastic materials. Int. J. Solids Struct. 39, 1757–1775 (2002)CrossRefGoogle Scholar
  10. 10.
    Hallstrom, S., Grenestedt, J.L.: Mixed mode fracture of cracks and wedge shaped notches in expanded PVC foam. Int. J. Fract. 88, 343–358 (1998)CrossRefGoogle Scholar
  11. 11.
    Lach, R., Seidler, S., Grellmann, W.: Resistance against the intrinsic rate of fracture mechanics parameters for polymeric materials under moderate impact loading. Mech. Time-Depend. Mat. 9, 103–119 (2005)CrossRefGoogle Scholar
  12. 12.
    Lach, R., Grellmann, W.: Time- and temperature-dependent fracture mechanics of polymers: general aspects at monotonic quasi-static and impact loading conditions. Macromol. Mater. Eng. 273, 555–567 (2008)CrossRefGoogle Scholar
  13. 13.
    Lach, R., Krolopp, T., Hutař, P., Grellmann, W.: Influence of the interface and the additional layer on the stable crack propagation through polyolefin bilayered structures. Procedia Mat. Sci. 867–872 (2014)Google Scholar
  14. 14.
    Baltá-Calleja, F.J., Fakirov, S.: Microhardness of Polymers. Cambridge Solid State Science Series. University Press, Cambridge (2000)Google Scholar
  15. 15.
    Šestáková, L., Náhlik, L., Hutař, P., Knesl, Z.: Fracture mechanics parameters of multilayer pipes. Appl. Comput. Mech. 1, 299–306 (2007)Google Scholar
  16. 16.
    Han, Y., Lach, R., Grellmann, W.: The Charpy impact fracture behaviour in ABS materials. Angew. Makromol. Chem. 270, 13–21 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • R. Lach
    • 1
  • T. Krolopp
    • 1
  • P. Hutař
    • 2
  • E. Nezbedová
    • 3
  • W. Grellmann
    • 1
    • 4
  1. 1.Polymer Service GmbH Merseburg, Associated An-Institute of University of Applied Sciences MerseburgMerseburgGermany
  2. 2.Academy of Sciences of the Czech RepublicInstitute of Physics of MaterialsBrnoCzech Republic
  3. 3.Polymer Institute BrnoBrnoCzech Republic
  4. 4.Centre of Engineering, Martin Luther University Halle-WittenbergHalle/SaaleGermany

Personalised recommendations