Pixium Vision: First Clinical Results and Innovative Developments

  • Ralf Hornig
  • Marcus Dapper
  • Eric Le Joliff
  • Robert Hill
  • Khalid Ishaque
  • Christoph Posch
  • Ryad Benosman
  • Yannick LeMer
  • José-Alain Sahel
  • Serge PicaudEmail author


Visual prostheses or Vision Restoration Systems (VRSs) aim to provide blind patients with useful visual information for face, shape, and object recognition, as well as reading and independent locomotion. VRS are specifically designed for patients having lost their photoreceptors. The loss of photoreceptors can either result from hereditary genetic retinal diseases such as retinitis pigmentosa or more complex diseases such as age-related macular degeneration. Visual restoration is achieved by electrically stimulating the residual retinal circuit. After successful clinical trials by others, Pixium Vision and its partners are developing two VRS solutions for blind patients: an epi-retinal and a sub-retinal approach. This chapter describes the specificities of the epi-retinal IRISTM VRS that has obtained the European CE cerfication mark, and also discuss the associated innovations developed at the Vision Institute for future VRS models.


Retinal prostheses Clinical study Blindness Material 



The Vision Institute was supported by INSERM, UPMC (Paris VI), Foundation Fighting Blindness, the Fédération des Aveugles de France, Fondation de la Recherche Médicale (grant number DBC20101021013), the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 280433 (Neurocare project) and under the Graphene Flagship (Contract N° 604391), the LabEx LIFESENSES (ANR-10-LABX-65), which was supported by French state funds managed by the ANR within the Investissements dAvenir programme (ANR-11-IDEX-0004-02).


  1. 1.
    Bendali A, Agnes C, Meffert S, Forster V, Bongrain A, Arnault JC, Sahel JA, Offenhausser A, Bergonzo P, Picaud S. Distinctive glial and neuronal interfacing on nanocrystalline diamond. PLoS One. 2014;9:e92562.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bendali A, Hess LH, Seifert M, Forster V, Stephan AF, Garrido JA, Picaud S. Purified neurons can survive on peptide-free graphene layers. Adv Healthc Mater. 2013;2:929–33.CrossRefPubMedGoogle Scholar
  3. 3.
    Bendali A, Rousseau L, Lissorgues G, Scorsone E, Djilas M, Degardin J, Dubus E, Fouquet S, Benosman R, Bergonzo P, Sahel JA, Picaud S. Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: model, production and in vivo biocompatibility. Biomaterials. 2015;67:73–83.CrossRefPubMedGoogle Scholar
  4. 4.
    Djilas M, Oles C, Lorach H, Bendali A, Degardin J, Dubus E, Lissorgues-Bazin G, Rousseau L, Benosman R, Ieng SH, Joucla S, Yvert B, Bergonzo P, Sahel J, Picaud S. Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation. J Neural Eng. 2011;8:046020.CrossRefPubMedGoogle Scholar
  5. 5.
    Feucht M, Laube T, Bornfeld N, Walter P, Velikay-Parel M, Hornig R, Richard G. Development of an epiretinal prosthesis for stimulation of the human retina. Der Ophthalmologe Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 2005;102:688–91.CrossRefPubMedGoogle Scholar
  6. 6.
    Hadjinicolaou AE, Leung RT, Garrett DJ, Ganesan K, Fox K, Nayagam DA, Shivdasani MN, Meffin H, Ibbotson MR, Prawer S, O’Brien BJ. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials. 2012;33:5812–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Hébert C, Mazellier JP, Scorsone E, Mermoux M, Bergonzo P. Boosting the electrochemical properties of diamond electrodes using carbon nanotube scaffolds. Carbon. 2014;71:27–33.CrossRefGoogle Scholar
  8. 8.
    Hébert C, Scorsone E, Mermoux M, Bergonzo P. Porous diamond with high electrochemical performance. Carbon. 2015;90:102–9.CrossRefGoogle Scholar
  9. 9.
    Hornig R, Laube T, Walter P, Velikay-Parel M, Bornfeld N, Feucht M, Akguel H, Rossler G, Alteheld N, Lutke Notarp D, Wyatt J, Richard G. A method and technical equipment for an acute human trial to evaluate retinal implant technology. J Neural Eng. 2005;2:S129–34.CrossRefPubMedGoogle Scholar
  10. 10.
    Hornig R, Zehnder T, Velikay-Parel M, Feucht M, Richard G. The IMI retina implant system. In: Humayun M, Weiland JD, Chader G, Greenbaum E, editors. Artifical sight: basic research, biomedical engineering, and clinical advances. New York: Springer; 2007.Google Scholar
  11. 11.
    Humayun MS, De Juan Jr E, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S. Pattern electrical stimulation of the human retina. Vision Res. 1999;39:2569–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Humayun MS, Dorn JD, Ahuja AK, Caspi A, Filley E, Dagnelie G, Salzmann J, Santos A, Duncan J, Dacruz L, Mohand-Said S, Eliott D, McMahon MJ, Greenberg RJ. Preliminary 6 month results from the argus II epiretinal prosthesis feasibility study. Conf Proc IEEE Eng Med Biol Soc. 2009;1:4566–8.Google Scholar
  13. 13.
    Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel JA, Stanga PE, Cideciyan AV, Duncan JL, Eliott D, Filley E, Ho AC, Santos A, Safran AB, Arditi A, Del Priore LV, Greenberg RJ. Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology. 2012;119:779–88.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Humayun MS, Prince M, De Juan Jr E, Barron Y, Moskowitz M, Klock IB, Milam AH. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1999;40:143–8.PubMedGoogle Scholar
  15. 15.
    Ivastinovic D, Langmann G, Nemetz W, Hornig R, Richard G, Velikay-Parel M. Clinical stability of a new method for fixation and explanation of epiretinal implants. Acta Ophthalmol. 2010;88:e285–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Joucla S, Yvert B. Improved focalization of electrical microstimulation using microelectrode arrays: a modeling study. PLoS One. 2009;4:e4828.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Keseru M, Feucht M, Bornfeld N, Laube T, Walter P, Rossler G, Velikay-Parel M, Hornig R, Richard G. Acute electrical stimulation of the human retina with an epiretinal electrode array. Acta Ophthalmol. 2012;90:e1–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Lorach H, Benosman R, Marre O, Ieng SH, Sahel JA, Picaud S. Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device. J Neural Eng. 2012;9:066004.CrossRefPubMedGoogle Scholar
  19. 19.
    Lorach H, Goetz G, Smith R, Lei X, Mandel Y, Kamins T, Mathieson K, Huie P, Harris J, Sher A, Palanker D. Photovoltaic restoration of sight with high visual acuity. Nat Med. 2015;21:476–82.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, De Juan Jr E. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci. 1999;40:2073–81.PubMedGoogle Scholar
  21. 21.
    Mathieson K, Loudin J, Goetz G, Huie P, Wang L, Kamins T, Galambos L, Smith R, Harris JS, Sher A, Palanker D. Photovoltaic retinal prosthesis with high pixel density. Nat Photonics. 2012;6:391–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Matteucci PB, Chen SC, Tsai D, Dodds CW, Dokos S, Morley JW, Lovell NH, Suaning GJ. Current steering in retinal stimulation via a quasimonopolar stimulation paradigm. Invest Ophthalmol Vis Sci. 2013;54:4307–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Menzel-Severing J, Laube T, Brockmann C, Bornfeld N, Mokwa W, Mazinani B, Walter P, Roessler G. Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial. Eye (Lond). 2012;26:501–9.CrossRefGoogle Scholar
  24. 24.
    Palanker D, Huie P, Vankov A, Aramant R, Seiler M, Fishman H, Marmor M, Blumenkranz M. Migration of retinal cells through a perforated membrane: implications for a high-resolution prosthesis. Invest Ophthalmol Vis Sci. 2004;45:3266–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Piret G, Hebert C, Mazellier JP, Rousseau L, Scorsone E, Cottance M, Lissorgues G, Heuschkel MO, Picaud S, Bergonzo P, Yvert B. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials. 2015;53:173–83.CrossRefPubMedGoogle Scholar
  26. 26.
    Posch C, Matolin D, Wohlgenannt R. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. Solid-State Circuits IEEE J. 2011;46:259–75.CrossRefGoogle Scholar
  27. 27.
    Posch C, Serrano-Gotarredona T, Linares-Barranco B, Delbruck T. Retinomorphic event-based vision sensors: bioinspired cameras with spiking output. Proc IEEE. 2014;102:1470–84.CrossRefGoogle Scholar
  28. 28.
    Richard G, Feucht M, Bornfeld N, Laube T, Rössler G, Velikay-Parel M, Hornig R. Multicenter study on acute electrical stimulation of the human retina with an epiretinal implant: clinical results in 20 patients. Invest Ophthalmol Vis Sci. 2005;46:1143.Google Scholar
  29. 29.
    Richard G, Keserue M, Zeitz O, Hornig R. Surgical aspects of a long-term implantation of a wireless chip in blind patients. I. In: Proceedings 9th EURETINA Congress Nice from 14 to 17 May 2009. p. 6:8–6:10.Google Scholar
  30. 30.
    Walter P, Szurman P, Vobig M, Berk H, Ludtke-Handjery HC, Richter H, Mittermayer C, Heimann K, Sellhaus B. Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina (Philadelphia Pa). 1999;19:546–52.CrossRefGoogle Scholar
  31. 31.
    Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc R Soc. 2011;B 278:1489–97.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Ralf Hornig
    • 1
  • Marcus Dapper
    • 2
  • Eric Le Joliff
    • 2
  • Robert Hill
    • 2
  • Khalid Ishaque
    • 2
  • Christoph Posch
    • 3
  • Ryad Benosman
    • 3
  • Yannick LeMer
    • 4
  • José-Alain Sahel
    • 3
    • 4
    • 5
    • 6
  • Serge Picaud
    • 3
    Email author
  1. 1.Pixium Vision SAParisFrance
  2. 2.Pixium VisionParisFrance
  3. 3.INSERM, Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, CNRS UMR7210, Institut de la VisionParisFrance
  4. 4.Fondation Ophtalmologique Adolphe de RothschildParisFrance
  5. 5.CHNO des Quinze-VingtsParisFrance
  6. 6.Academie des SciencesParisFrance

Personalised recommendations