Skip to main content

Prospects and Limitations of Spatial Resolution

  • Chapter
  • First Online:
Artificial Vision

Abstract

Our sense of vision permanently captures, transmits and interprets enormous amounts of visual information. The amount of visual information that can be transmitted to the brain by the means of visual prosthesis will be severely limited and thus also limit the rehabilitation prospects of such devices. While several parameters contribute to the information content of visual stimuli, this chapter concentrates essentially on spatial resolution.

The first part of the chapter is dedicated to discuss the results of simulation studies of prosthetic vision on normal subjects. These studies aimed to respond to the question of how much visual information should be transmitted to the brain to rehabilitate patients. The amount of visual information, necessary to accomplish daily living tasks (such as reading, eye-hand coordination or whole body mobility) is task-dependent and not only image resolution itself, but also other parameters such as the size of the effective visual field seem to be important.

In the second part of the chapter we tried to discuss to which extent the information made available by the stimulation device is lost or degraded before reaching the brain. The experience with actual retinal implants shows us that only part of the information provided by the device finds its way to the central nervous system and that this information loss can be highly variable from patient to patient: the spatial resolution provided by the devices corresponds rarely to the spatial resolution perceived by the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Distinct percepts of light produced by stimulating the visual system by other means than light.

  2. 2.

    Perceived phosphenes are distributed in a way that they can be easily interpreted by the visual system – they spatially represent the original image.

  3. 3.

    Their experimental setup is closest to our ‘random forest’ setup (Fig. 4.4).

  4. 4.

    These authors use a highly simplified (predictable) environment probably closest to our ‘indoor course’ (Fig. 4.3).

  5. 5.

    A recent paper [35] tried to compare functional performance of the two devices.

  6. 6.

    Several research groups work on the question of highly localized retinal stimulation using in vitro or vivo setups or computer models [e.g., 3640].

  7. 7.

    High stimulation currents risk damaging either the retinal tissue, or the electrode material, or both. The smaller the stimulating electrode surface (and consequently the higher the spatial resolution of the device), the lower are the currents that can be used to stimulate while respecting such security limits. The latter also depend on electrode material.

References

  1. Fernandes RA, Diniz B, Ribeiro R, Humayun M. Artificial vision through neuronal stimulation. Neurosci Lett. 2012;519(2):122–8.

    Article  CAS  PubMed  Google Scholar 

  2. Lorach H, Marre O, Sahel JA, Benosman R, Picaud S. Neural stimulation for visual rehabilitation: advances and challenges. J Physiol Paris. 2013;107(5):421–31.

    Article  PubMed  Google Scholar 

  3. Zrenner E. Fighting blindness with microelectronics. Sci Transl Med. 2013;5(210):210 ps16.

    Article  Google Scholar 

  4. Luo YH, da Cruz L. A review and update on the current status of retinal prostheses (bionic eye). Br Med Bull. 2014;109:31–44.

    Article  PubMed  Google Scholar 

  5. Weiland JD, Humayun MS. Retinal prosthesis. IEEE Trans Biomed Eng. 2014;61(5):1412–24.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 2015;1595:51–73.

    Article  CAS  PubMed  Google Scholar 

  7. Yu X, Ganz A. Audible vision for the blind and visually impaired in indoor open spaces. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5110–3.

    PubMed  Google Scholar 

  8. Lee VK, Nau AC, Laymon C, Chan KC, Rosario BL, Fisher C. Successful tactile based visual sensory substitution use functions independently of visual pathway integrity. Front Hum Neurosci. 2014;8:291.

    PubMed  PubMed Central  Google Scholar 

  9. Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science. 1995;270(5234):303–4.

    Article  CAS  PubMed  Google Scholar 

  10. Chen SC, Suaning GJ, Morley JW, Lovell NH. Simulating prosthetic vision: II. Measuring functional capacity. Vision Res. 2009;49(19):2329–43.

    Article  PubMed  Google Scholar 

  11. Pelli DG. The visual requirements of mobility. In: Woo GC, editor. Low vision: principles and applications. New York: Springer; 1987. p. 134–46.

    Chapter  Google Scholar 

  12. Sommerhalder J, Rappaz B, de Haller R, Perez Fornos A, Safran AB, Pelizzone M. Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vision Res. 2004;44(14):1693–706.

    Article  PubMed  Google Scholar 

  13. Legge GE, Pelli DG, Rubin GS, Schleske MM. Psychophysics of reading. I Normal Vis Res. 1985;25(2):239–52.

    Article  CAS  PubMed  Google Scholar 

  14. Cha K, Horch KW, Normann RA, Boman DK. Reading speed with a pixelized vision system. J Opt Soc Am A. 1992;9(5):673–7.

    Article  CAS  PubMed  Google Scholar 

  15. Dagnelie G, Barnett D, Humayun MS, Thompson Jr RW. Paragraph text reading using a pixelized prosthetic vision simulator: parameter dependence and task learning in free-viewing conditions. Invest Ophthalmol Vis Sci. 2006;47(3):1241–50.

    Article  PubMed  Google Scholar 

  16. Mousty P, Bertelson P. A study of braille reading: 1. Reading speed as a function of hand usage and context. Q J Exp Psychol A. 1985;37(2):217–33.

    Article  CAS  PubMed  Google Scholar 

  17. Perez Fornos A, Sommerhalder J, Pittard A, Safran AB, Pelizzone M. Simulation of artificial vision: IV. Visual information required to achieve simple pointing and manipulation tasks. Vision Res. 2008;48(16):1705–18.

    Article  PubMed  Google Scholar 

  18. Humayun MS. Intraocular retinal prosthesis. Trans Am Ophthalmol Soc. 2001;99:271–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayes JS, Yin VT, Piyathaisere D, Weiland JD, Humayun MS, Dagnelie G. Visually guided performance of simple tasks using simulated prosthetic vision. Artif Organs. 2003;27(11):1016–28.

    Article  PubMed  Google Scholar 

  20. Dagnelie G, Walter M, Liancheng Y. Playing checkers: detection and eye-hand coordination in simulated prosthetic vision. J Mod Opt. 2006;53(9):1325–42.

    Article  Google Scholar 

  21. Srivastava NR, Troyk PR, Dagnelie G. Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device. J Neural Eng. 2009;6(3):035008.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Perez Fornos A, Sommerhalder J, Chanderli K, Pittard A, Baumberger B, Fluckiger M, Safran AB, Pelizzone M. Minimum requirements for mobility in known environments and perceptual learning of this task in eccentric vision. ARVO Meeting Abstracts. 2004;45(5):5445.

    Google Scholar 

  23. Sommerhalder J, Perez-Fornos A, Chanderli K, Colin L, Schaer X, Mauler F, Safran AB, Pelizzone M. Minimum requirements for mobility in unpredictible environments. Invest Ophthalmol Vis Sci. 2006;(47):ARVO E-Abstract 3204.

    Google Scholar 

  24. Cha K, Horch KW, Normann RA. Mobility performance with a pixelized vision system. Vision Res. 1992;32(7):1367–72.

    Article  CAS  PubMed  Google Scholar 

  25. Dagnelie G, Keane P, Narla V, Yang L, Weiland J, Humayun M. Real and virtual mobility performance in simulated prosthetic vision. J Neural Eng. 2007;4(1):S92–101.

    Article  PubMed  Google Scholar 

  26. Wang L, Yang L, Dagnelie G. Virtual way finding using simulated prosthetic vision in gaze-locked viewing. Optom Vis Sci. 2008;85(11):E1057–63.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Perez Fornos A, Sommerhalder J, Pelizzone M. Reading with a simulated 60-channel implant. Front Neurosci. 2011;5:57.

    Google Scholar 

  28. da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, Chen FK, Wuyyuru V, Sahel J, Stanga P, Humayun M, Greenberg RJ, Dagnelie G. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol. 2013;97(5):632–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sahel JA, da Cruz L, Hafezi F, Stanga PE, Merlini F, Coley B, Greenberg RG, Argus II™ Study Group. Subjects blind from outer retinal dystrophies are able to consistently read short sentences using the Argus™ II retinal prosthesis system. Invest Ophthalmol Vis Sci. 2011;(52):E-Abstract 3420.

    Google Scholar 

  30. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci. 2011;278(1711):1489–97.

    Article  PubMed  Google Scholar 

  31. Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, Greppmaier U, Hipp S, Hortdorfer G, Kernstock C, Koitschev A, Kusnyerik A, Sachs H, Schatz A, Stingl KT, Peters T, Wilhelm B, Zrenner E. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci. 2013;280(1757):20130077.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, Groppe M, Jackson TL, MacLaren RE, Koitschev A, Kusnyerik A, Neffendorf J, Nemeth J, Naeem MA, Peters T, Ramsden JD, Sachs H, Simpson A, Singh MS, Wilhelm B, Wong D, Zrenner E. Subretinal visual implant alpha IMS – clinical trial interim report. Vis Res. 2015;111(Pt B):149–60.

    Article  PubMed  Google Scholar 

  33. Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel JA, Stanga PE, Cideciyan AV, Duncan JL, Eliott D, Filley E, Ho AC, Santos A, Safran AB, Arditi A, Del Priore LV, Greenberg RJ. Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology. 2012;119(4):779–88.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ho AC, Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Handa J, Barale PO, Sahel JA, Stanga PE, Hafezi F, Safran AB, Salzmann J, Santos A, Birch D, Spencer R, Cideciyan AV, de Juan E, Duncan JL, Eliott D, Fawzi A, Olmos de Koo LC, Brown GC, Haller JA, Regillo CD, Del Priore LV, Arditi A, Geruschat DR, Greenberg R. Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology. 2015;122(8):1547–54.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stronks HC, Dagnelie G. The functional performance of the Argus II retinal prosthesis. Expert Rev Med Devices. 2014;11(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  36. Jepson LH, Hottowy P, Mathieson K, Gunning DE, Dabrowski W, Litke AM, Chichilnisky EJ. Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses. J Neurosci. 2013;33(17):7194–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jepson LH, Hottowy P, Mathieson K, Gunning DE, Dabrowski W, Litke AM, Chichilnisky EJ. Spatially patterned electrical stimulation to enhance resolution of retinal prostheses. J Neurosci. 2014;34(14):4871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmid EW, Fink W, Wilke R. Operational challenges of retinal prostheses. Med Eng Phys. 2014;36(12):1644–55.

    Article  PubMed  Google Scholar 

  39. Habib AG, Cameron MA, Suaning GJ, Lovell NH, Morley JW. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration. J Neural Eng. 2013;10(3):036013.

    Article  PubMed  Google Scholar 

  40. Abramian M, Lovell NH, Habib A, Morley JW, Suaning GJ, Dokos S. Quasi-monopolar electrical stimulation of the retina: a computational modelling study. J Neural Eng. 2014;11(2):025002.

    Article  PubMed  Google Scholar 

  41. Jones BW, Marc RE. Retinal remodeling during retinal degeneration. Exp Eye Res. 2005;81(2):123–37.

    Article  CAS  PubMed  Google Scholar 

  42. Chang MH, Kim HS, Shin JH, Park KS. Facial identification in very low-resolution images simulating prosthetic vision. J Neural Eng. 2012;9(4):046012.

    Article  CAS  PubMed  Google Scholar 

  43. Al-Atabany W, McGovern B, Mehran K, Berlinguer-Palmini R, Degenaar P. A processing platform for optoelectronic/optogenetic retinal prosthesis. IEEE Trans Biomed Eng. 2013;60(3):781–91.

    Article  PubMed  Google Scholar 

  44. Parikh N, Itti L, Humayun M, Weiland J. Performance of visually guided tasks using simulated prosthetic vision and saliency-based cues. J Neural Eng. 2013;10(2):026017.

    Article  CAS  PubMed  Google Scholar 

  45. Parikh NJ, McIntosh BP, Tanguay AR, Humayun MS, Weiland JD. Biomimetic image processing for retinal prostheses: peripheral saliency cues. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4569–72.

    PubMed  Google Scholar 

  46. Fink W, Tarbell MA. Artificial vision support system (AVS(2)) for improved prosthetic vision. J Med Eng Technol. 2014;38(8):385–95.

    Article  PubMed  Google Scholar 

  47. Perez Fornos A, Sommerhalder J, da Cruz L, Sahel JA, Mohand-Said S, Hafezi F, Pelizzone M. Temporal properties of visual perception on electrical stimulation of the retina. Invest Ophthalmol Vis Sci. 2012;53(6):2720–31.

    Article  PubMed  Google Scholar 

  48. Troxler D. Ueber das Verschwinden gegebener Gegenstände innerhalb unseres Gesichtskreises. In: Himly K, Schmidt JA, editors. Ophthalmologische Bibliothek II, vol. 2. Jena: Fromann; 1804. p. 1–119.

    Google Scholar 

  49. De Weerd P. Perceptual filling-in: more than the eye can see. Prog Brain Res. 2006;154(1):227–45.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Sommerhalder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sommerhalder, J., Pérez Fornos, A. (2017). Prospects and Limitations of Spatial Resolution. In: Gabel, V. (eds) Artificial Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-41876-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41876-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41874-2

  • Online ISBN: 978-3-319-41876-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics