Skip to main content

The Radioprotection of the Child in Emergency Radiology

  • Chapter
  • First Online:
Book cover Imaging Non-traumatic Abdominal Emergencies in Pediatric Patients
  • 1060 Accesses

Abstract

Diagnostic radiation is an effective tool that can save lives, especially in emergency settings. Anyway, over the past two decades, special issues have arisen regarding the protection of children undergoing radiological examinations. The risks associated with the use of ionizing radiation in diagnostic imaging include almost exclusively stochastic effects (e.g., cancer or genetic modifications). These effects are also called probabilistic because there is no threshold, and it is assumed that the probability of having effects is proportional to the absorbed dose, not their severity.

Therefore, radiation protection principles of justification and optimization need to be respected, but the main goal of a justified radiological procedure is to produce a diagnostic result. The “tailoring” of the technique requires the knowledge of the equipment and of the effects of setting change and their potential pitfalls (e.g., gonadal shielding). Radiological staff should be trained to communicate in a proper way the effects of ionizing radiation and need to consider a potential pregnancy also in childbearing age females.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AAPM (2012) PP 26-A use of bismuth shielding for the purpose of dose reduction in CT scanning. Available via http://www.aapm.org/publicgeneral/BismuthShielding.pdf

  • ACR (2015) American College of radiology’s appropriateness criteria®. http://www.acr.org/quality-safety/appropriateness-criteria. Accessed 26 Dec 2015

  • Amis ES Jr, Butler PF, Applegate KE, Birnbaum SB, Brateman LF, Hevezi JM, Mettler FA, Morin RL, Pentecost MJ, Smith GG, Strauss KJ, Zeman RK (2007) American college of radiology white paper on radiation dose in medicine. J Am Coll Radiol 4:272–284

    Article  PubMed  Google Scholar 

  • Aufrichtig R, Xue P, Thomas CW, Gilmore GC, Wilson DL (1994) Perceptual comparison of pulsed and continuous fluoroscopy. Med Phys 21:245–256

    Article  CAS  PubMed  Google Scholar 

  • Bardo DME, Black M, Schenk K, Zaritzky MF (2009) Location of the ovaries in girls from newborn to 18 years of age: reconsidering ovarian shielding. Pediatr Radiol 39:253–259

    Article  PubMed  Google Scholar 

  • Berrington de Gonzales A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, Land C (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077

    Article  Google Scholar 

  • Boutis K, Cogollo W, Fischer J, Freedman SB, Ben David G, Thomas KE (2013) Parental knowledge of potential cancer risks from exposure to computed tomography. Pediatrics 132:305–311

    Article  PubMed  Google Scholar 

  • Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176(2):289–296

    Article  CAS  PubMed  Google Scholar 

  • Connolly B, Racadio J, Towbin R (2006) Practice of ALARA in the pediatric interventional suite. Pediatr Radiol 68(S2):163–167

    Article  Google Scholar 

  • Cook V (2001) Radiation protection and quality assurance in paediatric radiology. Imaging 13:229–238

    Article  Google Scholar 

  • Coursey C, Frush DP, Yoshizumi T, Toncheva G, Nguyen G, Greenberg SB (2008) Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding. AJR Am J Roentgenol 190(1):W54–W61

    Article  PubMed  Google Scholar 

  • Dauer LT, Casciotta KA, Rothenberg LN (2007) Radiation dose reduction at a price: the effectiveness of a male gonadal shield during helical CT scans. BMC Med Imaging 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Dauer LT, Thornton RH, Hay JL, Balter R, Williamson MJ, St Germain J (2011) Fears, feelings, and facts: interactively communicating benefits and risks of medical radiation with patients. AJR Am J Roentgenol 196:756–761

    Article  PubMed  Google Scholar 

  • Don S (2004) Radiosensitivity of children: potential for overexposure in CR and DR and magnitude of doses in ordinary radiographic examinations. Pediatr Radiol 34(S3):S167–S172

    Article  PubMed  Google Scholar 

  • European Commission 16261 (1996) European guidelines on quality criteria for diagnostic radiographic images in paediatrics. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • European Council Directive 2013/59/Euratom (2014) European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. OJ of the EU. L13; 57:1–73 Accesible via https://ec.europa.eu/energy/sites/ener/files/documents/CELEX-32013L0059-EN-TXT.pdf

  • EuroSafe imaging (2015) PiDRL project – European diagnostic reference levels for paediatric imaging. Available via http://www.eurosafeimaging.org/wp/wp-content/uploads/2015/09/European-Guidelines-on-DRLs-for-Paediatric-Imaging_FINAL-for-workshop_30-Sept-2015.pdf

  • Health Protection Agency (2009) Protection of pregnant patients during diagnostic medical exposures to ionising radiation. Advice from the Health Protection Agency, The Royal College of radiologists and the college of radiographers. HPA Radiation, Chemical and Environmental Hazards RCE-9. Oxfordshire

    Google Scholar 

  • Hiorns MP, Saini A, Marsden PJ (2006) A review of current local dose-area product levels for paediatric fluoroscopy in a tertiary referral centre compared with national standards. Why are they so different? Br J Radiol 79:326–330

    Article  CAS  PubMed  Google Scholar 

  • ICRP Publication 103 (2007) The 2007 recommendations of the international commission on radiological protection. Elsevier: Ann ICRP 37(2–4)

    Google Scholar 

  • ICRP Publication 121 (2013) Radiological protection in paediatric diagnostic and interventional radiology. Elsevier: Ann ICRP 42(2)

    Google Scholar 

  • ICRP Publication 34 (1982) Protection of the patient in diagnostic radiology. Pergamon Press, Oxford, Ann ICRP 9 (2/3)

    Google Scholar 

  • ICRP Publication 84 (2000) Pregnancy and medical radiation. Pergamon Press, Oxford, Ann ICRP 30(1)

    Google Scholar 

  • International Atomic Energy Agency (2014) Radiation protection and safety of radiation sources: international basic safety standards. Edition IAEA safety standards no: general safety requirements part 3, Vienna

    Google Scholar 

  • Lederman HM, Khademian ZP, Felice M, Hurh PJ (2002) Dose reduction fluoroscopy in pediatrics. Pediatr Radiol 32:844–848

    Article  PubMed  Google Scholar 

  • Leswick DA, Hunt MM, Webster ST, Fladeland DA (2008) Thyroid shields versus z-axis automatic tube current modulation for dose reduction at neck CT. Radiology 249(2):572–580

    Article  PubMed  Google Scholar 

  • Levetown M (2008) Communicating with children and families: from everyday interaction to skill in conveying distressing information. Pediatrics 121(5):e1441–e1460

    Article  PubMed  Google Scholar 

  • WHO Library (2016) Communicating radiation risks in paediatric imaging: information to support health care discussions about benefit and risk. ISBN 978 92 4 151034 9. Accessible via http://www.who.int/ionizing_radiation/pub_meet/radiation-risks-paediatric-imaging/en/

  • Mahesh M (2001) Fluoroscopy: patient radiation exposure issues. Radio Graph 21:1033–1045

    CAS  Google Scholar 

  • Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360–f2378

    Article  PubMed  PubMed Central  Google Scholar 

  • McCollough CH, Bushberg JT, Fletcher JG, Eckel LJ (2015) Answers to common questions about the use and safety of CT scans. Mayo Clin Proc 90(10):1380–1392

    Article  PubMed  Google Scholar 

  • Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, Feigelson HS, Roblin D, Flynn MJ, Vanneman N, Smith-Bindman R (2013) Pediatric computed tomography and associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707

    Article  PubMed  PubMed Central  Google Scholar 

  • NAS/NRC (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Board on radiation effects research. National Research Council of the National Academies. The National Academies Press, Washington, DC

    Google Scholar 

  • Nicholson R, Tuffee F, Uthappa MC (2000) Skin sparing in interventional radiology: the effect of copper filtration. Br J Radiol 73:36–42

    Article  CAS  PubMed  Google Scholar 

  • Njeh CF, Wade JP, Goldstone KE (1997) The use of lead aprons in chest radiography. Radiography 3:143–147

    Article  Google Scholar 

  • Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Craft AW, Parker L, Berrington de González A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez MR (2015) Referral criteria and clinical decision support: radiological protection aspects for justification. Ann ICRP 44(1):276–287

    Article  Google Scholar 

  • Picano E (2004) Informed consent and communication of risk from radiological and nuclear medicine examinations: how to escape from a communication inferno. BMJ 329(7470):849–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K (2003) Studies of mortality of atomic bomb survivors. Report 13: solid cancer and non-cancer disease mortality 1950–1997. Radiat Res 160:381–407

    Article  CAS  PubMed  Google Scholar 

  • Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K (2012) Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950–1997. 2003. Radiat Res 178(2):AV146–1472

    Google Scholar 

  • Radiation Protection 100 (1998) European commission guidance for protection of unborn children and infants irradiated due to parental medical exposures. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • RCR (2012) iRefer: making the best use of clinical radiology, 7th edn. The Royal College of Radiologists, London, (http://www.rcr.ac.uk/content.aspx?PageID=995. Accessed 23 Dec 2015

    Google Scholar 

  • Schneider K, Perlmutter N, Arthur R, Cook V, Horwitz AE, Thomas P, Kramer P, Montagne JP, Ernst G, Kohn MM, Panzer W, Wall B (2000) Micturition cystourethrography in paediatric patients in selected children’s hospitals in Europe: evaluation of fluoroscopy technique, image quality criteria and dose. Radiat Prot Dosimetry 90:197–201

    Article  Google Scholar 

  • Seibert JA, Morin RL (2011) The standardized exposure index for digital radiography: an opportunity for optimization of radiation dose to the pediatric population. Pediatr Radiol 41:573–581

    Article  PubMed  PubMed Central  Google Scholar 

  • Slovis TL, Strauss KJ (2013) Gonadal shielding for neonates. Pediatr Radiol 43:1265–1266

    Article  PubMed  Google Scholar 

  • Strauss K (2006) Pediatric interventional radiography equipment: safety considerations. Pediatr Radiol 36(S2):126–135

    Article  PubMed  PubMed Central  Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations scientific committee on the effects of atomic radiation report to the general assembly with scientific annexes, vol II, Effects. United Nations, New York

    Google Scholar 

  • Wagner LK (2011) Toward a holistic approach in the presentation of benefits and risks of medical radiation. Health Phys 101(5):566–571

    Article  CAS  PubMed  Google Scholar 

  • Winfeld M, Strubel N, Pinkney L, Lala S, Milla S, Babb J, Fefferman N (2013) Relative distribution of pertinent findings on portable neonatal abdominal radiographs: can we shield the gonads? Pediatr Radiol 43:1295–1302

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Magistrellli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magistrellli, A. (2016). The Radioprotection of the Child in Emergency Radiology. In: Miele, V., Trinci, M. (eds) Imaging Non-traumatic Abdominal Emergencies in Pediatric Patients. Springer, Cham. https://doi.org/10.1007/978-3-319-41866-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41866-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41865-0

  • Online ISBN: 978-3-319-41866-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics