Meininger DD, Byhahn C, Heller K, Gutt CN, Westphal K. Totally endoscopic Nissen fundoplication with a robotic system in a child. Surg Endosc. 2001;15(11):1360.
CAS
CrossRef
PubMed
Google Scholar
Cundy TP, Shetty K, Clark J, Chang TP, Sriskandarajah K, Gattas NE, Najmaldin A, Yang GZ, Darzi A. The first decade of robotic surgery in children. J Pediatr Surg. 2013;48(4):858–65.
CrossRef
PubMed
Google Scholar
Adikibi BT, Mackinlay GA, Clark MC, Duthie GH, Munro FD. The risks of minimal access surgery in children: an aid to consent. J Pediatr Surg. 2012;47(3):601–5.
CrossRef
PubMed
Google Scholar
te Velde EA, Bax NM, Tytgat SH, de Jong JR, Travassos DV, Kramer WL, van der Zee DC. Minimally invasive pediatric surgery: increasing implementation in daily practice and resident’s training. Surg Endosc. 2008;22(1):163–6.
CrossRef
Google Scholar
Dangle PP, Akhavan A, Odeleye M, Avery D, Lendvay T, Koh CJ, Elder JS, Noh PH, Bansal D, Schulte M, MacDonald J, Shukla A, Kim C, Herbst K, Corbett S, Kearns J, Kunnavakkam R, Gundeti MS. Ninety-day perioperative complications of pediatric robotic urological surgery: a multi-institutional study. J Pediatr Urol. 2016;12(2):102.e1–6.
CAS
CrossRef
Google Scholar
Hsu RL, Kaye AD, Urman RD. Anesthetic challenges in robotic-assisted urologic surgery. Rev Urol. 2013;15(4):178–84.
PubMed
PubMed Central
Google Scholar
Alemzadeh H, Raman J, Leveson N, Kalbarczyk Z, Iyer RK. Adverse events in robotic surgery: a retrospective study of 14 years of FDA data. PLoS One. 2016;11(4):e0151470.
CrossRef
PubMed
PubMed Central
Google Scholar
Najmaldin A, Antao B. Early experience of tele-robotic surgery in children. Int J Med Robot. 2007;3(3):199–202.
CAS
CrossRef
PubMed
Google Scholar
Iranmanesh P, Morel P, Wagner OJ, Inan I, Pugin F, Hagen ME. Set-up and docking of the da Vinci surgical system: prospective analysis of initial experience. Int J Med Robot. 2010;6(1):57–60.
PubMed
Google Scholar
Iranmanesh P, Morel P, Buchs NC, Pugin F, Volonte F, Kreaden US, Hagen ME. Docking of the da Vinci Si Surgical System® with single-site technology. Int J Med Robot. 2013;9(1):12–6.
Google Scholar
Bruns NE, Soldes OS, Ponsky TA. Robotic surgery may not “Make the Cut” in pediatrics. Front Pediatr. 2015;3:10.
CrossRef
PubMed
PubMed Central
Google Scholar
Chang C, Steinberg Z, Shah A, Gundeti MS. Patient positioning and port placement for Robotic-Assisted Surgery. J Endourol. 2014;28(6):631–8.
CrossRef
PubMed
PubMed Central
Google Scholar
Chao SYC, Tan HL. General principles of laparoscopic access. In: Spitz L, Coran A, editors. Operative paediatric surgery. 7th ed. New York: CRC Press; 2014. p. 333–6.
Google Scholar
Passerotti CC, Nguyen HT, Retik AB, Peters CA. Patterns and predictors of laparoscopic complications in pediatric urology: the role of ongoing surgical volume and access techniques. J Urol. 2008;180(2):681–5.
CrossRef
PubMed
Google Scholar
Ahmad G, O’Flynn H, Duffy JMN, Phillips K, Watson A. Laparoscopic entry techniques. Cochrane Database of Systematic Reviews 2012, Issue 2. Art. No.: CD006583.
Google Scholar
Epstein J, Arora A, Ellis H. Surface anatomy of the inferior epigastric artery in relation to laparoscopic injury. Clin Anat. 2004;17(5):400–8.
CAS
CrossRef
PubMed
Google Scholar
Usal H, Sayad P, Hayek N, Hallak A, Huie F, Ferzli G. Major vascular injuries during laparoscopic cholecystectomy. An institutional review of experience with 2589 procedures and literature review. Surg Endosc. 1998;12(7):960–2.
CAS
CrossRef
PubMed
Google Scholar
Mattei P, Tyler DC. Carbon dioxide embolism during laparoscopic cholecystectomy due to a patent paraumbilical vein. J Pediatr Surg. 2007;42(3):570–2.
CrossRef
PubMed
Google Scholar
Ott DE. Subcutaneous emphysema—beyond the pneumoperitoneum. JSLS. 2014;18(1):1–7.
CrossRef
PubMed
PubMed Central
Google Scholar
Wagner CR, Howe RD. Force feedback benefit depends on experience in multiple degree of freedom robotic surgery task. IEEE Trans Robot. 2007;23(6):1235–40.
CrossRef
Google Scholar
Meccariello G, Faedi F, AlGhamdi S, Montevecchi F, Firinu E, Zanotti C, Cavaliere D, Gunelli R, Taurchini M, Amadori A, Vicini C. An experimental study about haptic feedback in robotic surgery: may visual feedback substitute tactile feedback? J Robot Surg. 2016;10(1):57–61.
CrossRef
PubMed
Google Scholar
Cundy TP, Gattas NE, Yang GZ, Darzi A, Najmaldin AS. Experience related factors compensate for haptic loss in robot-assisted laparoscopic surgery. J Endourol. 2014;28(5):532–8.
CrossRef
PubMed
Google Scholar
Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol. 2009;19(1):102–7.
CrossRef
PubMed
PubMed Central
Google Scholar
Cormier B, Nezhat F, Sternchos J, Sonoda Y, Leitao MM Jr. Electrocautery-associated vascular injury during robotic-assisted surgery. Obstet Gynecol. 120(2 Pt 2):491–3.
Google Scholar
Miyake H, Kawabata G, Gotoh A, Fujisawa M, Okada H, Arakawa S, Kamidono S, Hara I. Comparison of surgical stress between laparoscopy and open surgery in the field of urology by measurement of humoral mediators. Int J Urol. 2002;9(6):329–33.
CrossRef
PubMed
Google Scholar
Marucci DD, Shakeshaft AJ, Cartmill JA, Cox MR, Adams SG, Martin CJ. Grasper trauma during laparoscopic cholecystectomy. Aust N Z J Surg. 2000;70(8):578–81.
CAS
CrossRef
PubMed
Google Scholar
Bansal D, Defoor WR Jr, Reddy PP, Minevich EA, Noh PH. Complications of robotic surgery in pediatric urology: a single institution experience. Urology. 2013;82(4):917–20.
CrossRef
PubMed
Google Scholar
Camps JI. The use of robotics in pediatric surgery: my initial experience. Pediatr Surg Int. 2011;27(9):991–6.
CrossRef
PubMed
Google Scholar
Marhuenda C, Giné C, Asensio M, Guillén G, Martínez Ibáñez V. Robotic surgery: first pediatric series in Spain. Cir Pediatr. 2011;24(2):90–2.
CAS
PubMed
Google Scholar
Andonian S, Okeke Z, Okeke DA, Rastinehad A, Vanderbrink BA, Richstone L, Lee BR. Device failures associated with patient injuries during robot-assisted laparoscopic surgeries: a comprehensive review of FDA MAUDE database. Can J Urol. 2008;15(1):3912–6.
PubMed
Google Scholar
Nayyar R, Gupta NP. Critical appraisal of technical problems with robotic urological surgery. BJU Int. 2010;105(12):1710–3.
CrossRef
PubMed
Google Scholar
Zorn KC, Gofrit ON, Orvieto MA, Mikhail AA, Galocy RM, Shalhav AL, Zagaja GP. Da Vinci robot error and failure rates: single institution experience on a single three-arm robot unit of more than 700 consecutive robot-assisted laparoscopic radical prostatectomies. J Endourol. 2007;21(11):1341–4.
CrossRef
PubMed
Google Scholar
Bhama AR, Wafa AM, Ferraro J, Collins SD, Mullard AJ, Vandewarker JF, Krapohl G, Byrn JC, Cleary RK. Comparison of risk factors for unplanned conversion from laparoscopic and robotic to open colorectal surgery using the Michigan Surgical Quality Collaborative (MSQC) Database. J Gastrointest Surg. 2016;20(6):1223–30.
CrossRef
PubMed
Google Scholar
Jiménez Rodríguez RM, De la Portilla De Juan F, Díaz Pavón JM, Rodríguez Rodríguez A, Prendes Sillero E, Cadet Dussort JM, Padillo J. Analysis of conversion factors in robotic-assisted rectal cancer surgery. Int J Color Dis. 2014;29(6):701–8.
CrossRef
Google Scholar
Draper K, Jefson R, Jongeward R Jr, McLeod M. Duration of postlaparoscopic pneumoperitoneum. Surg Endosc. 1997;11(8):809–11.
CAS
CrossRef
PubMed
Google Scholar
Smith KS, Wilson TC, Luces L, Stevenson AA, Hajhosseini B, Siram SM. Pneumoperitoneum 48 days after laparoscopic hysterectomy. JSLS. 2013;17(4):661–4.
CrossRef
PubMed
PubMed Central
Google Scholar
Hermsen ED, Hinze T, Sayles H, Sholtz L, Rupp ME. Incidence of surgical site infection associated with robotic surgery. Infect Control Hosp Epidemiol. 2010;31(8):822–7.
CrossRef
PubMed
Google Scholar
Tapscott A, Kim SS, White S, Graves R, Kraft K, Casale P. Port-site complications after pediatric urologic robotic surgery. J Robot Surg. 2009;3:187.
CrossRef
PubMed
Google Scholar
Cost NG, Lee J, Snodgrass WT, Harrison CB, Wilcox DT, Baker LA. Hernia after pediatric urological laparoscopy. J Urol. 2010;183(3):1163–7.
CrossRef
PubMed
Google Scholar
Paya K, Wurm J, Fakhari M, Felder-Puig R, Puig S. Trocar-site hernia as a typical postoperative complication of minimally invasive surgery among preschool children. Surg Endosc. 2008;22(12):2724–7.
CAS
CrossRef
PubMed
Google Scholar
Mufarrij PW, Woods M, Shah OD, Palese MA, Berger AD, Thomas R, Stifelman MD. Robotic dismembered pyeloplasty: a 6-year, multi-institutional experience. J Urol. 2008;180(4):1391–6.
CrossRef
PubMed
Google Scholar
Gupta NP, Nayyar R, Hemal AK, Mukherjee S, Kumar R, Dogra PN. Outcome analysis of robotic pyeloplasty: a large single-centre experience. BJU Int. 2010;105(7):980–3.
CrossRef
PubMed
Google Scholar
Minnillo BJ, Cruz JA, Sayao RH, Passerotti CC, Houck CS, Meier PM, Borer JG, Diamond DA, Retik AB, Nguyen HT. Long-term experience and outcomes of robotic assisted laparoscopic pyeloplasty in children and young adults. J Urol. 2011;185(4):1455–60.
CrossRef
PubMed
Google Scholar
Schwentner C, Pelzer A, Neururer R, Springer B, Horninger W, Bartsch G, Peschel R. Robotic Anderson-Hynes pyeloplasty: 5-year experience of one centre. BJU Int. 2007;100(4):880–5.
CrossRef
PubMed
Google Scholar
Hemal AK, Mishra S, Mukharjee S, Suryavanshi M. Robot assisted laparoscopic pyeloplasty in patients of ureteropelvic junction obstruction with previously failed open surgical repair. Int J Urol. 2008;15(8):744–6.
CrossRef
PubMed
Google Scholar
Cundy TP, Rowland SP, Gattas NE, White AD, Najmaldin AS. The learning curve of robot-assisted laparoscopic fundoplication in children: a prospective evaluation and CUSUM analysis. Int J Med Robot. 2015;11(2):141–9.
CrossRef
PubMed
Google Scholar
Tolboom RC, Draaisma WA, Broeders IA. Evaluation of conventional laparoscopic versus robot-assisted laparoscopic redo hiatal hernia and antireflux surgery: a cohort study. J Robot Surg. 2016;10(1):33–9.
CrossRef
PubMed
PubMed Central
Google Scholar
Cooper MA, Ibrahim A, Lyu H, Makary MA. Underreporting of robotic surgery complications. J Healthc Qual. 2015;37(2):133–8.
CrossRef
PubMed
Google Scholar