Skip to main content

Operating Room Setting and Robotic Instrumentation

  • 643 Accesses

Abstract

Robotic system technology for minimally invasive surgery has gained maximum attention also in children. However, the lack of specialized instruments for infants and children requires an adapted platform to maximize the efficiency of standard instruments in the pediatric field and minimize the potential for errors. Careful preoperative room planning must be specifically defined in pediatrics to address the limited surface area in small children. The best way to modify the pediatric robotic operating room is to use an operating room table that can move with respect to the robot. The placement of all the working ports in a limited working space in small children is crucial and represents the most challenging aspect to maximize movement and prevent collisions with the external robotic arms. Proper patient positioning on the operating table is essential to allow optimal surgical view. A well-trained and collegial surgical team is crucial for the operating room dynamics and likely contributes to positive patient outcomes.

Keywords

  • Robotic
  • Setting
  • Instrumentation
  • Operating room
  • Surgical system
  • Children

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-41863-6_3
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-41863-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8

References

  1. Ng AT, Tam PC. Current status of robot-assisted surgery. Hong Kong Med J. 2014;20:241–50.

    PubMed  Google Scholar 

  2. Moorthy K, Munz Y, Dosis A, Hernandez J, Martin S, Bello F, Rockall T, Darzi A. Dexterity enhancement with robotic surgery. Surg Endosc. 2004;18:790–5.

    CAS  PubMed  Google Scholar 

  3. Byrn JC, Schluender S, Divino CM, Conrad J, Gurland B, Shlasko E, Szold A. Three-dimensional imaging improves surgical performance for both novice and experienced operators using the da Vinci robot system. Am J Surg. 2007;193:519–22.

    CrossRef  PubMed  Google Scholar 

  4. van der Schatte Olivier RH, van’t Hullenaar CDP, Ruurda JP, Broeders IAMJ. Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surg Endosc. 2009;23(6):1365–71.

    CrossRef  PubMed  Google Scholar 

  5. Hubert N, Gilles M, Desbrosses K, Meyer JP, Felblinger J, Hubert J. Ergonomic assessment of the surgeon’s physical work- load during standard and robotic assisted laparoscopic procedures. Int J Med Robot. 2013;9:142–7.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Lee EC, Rafiq A, Merrell R, Ackerman R, Denderlein JT. Ergonomics and human factors in endoscopic surgery: a comparision of manual vs telerobotic simulation systems. Surg Endosc. 2005;19:1064–70.

    CAS  CrossRef  PubMed  Google Scholar 

  7. van Haasteren G, Levine S, Hayes W. Pediatric robotic surgery: early assessment. Pediatrics. 2009;124:1642–9.

    CrossRef  PubMed  Google Scholar 

  8. Sinha CK, Haddad M. Robot-assisted surgery in children: current status. J Robot Surg. 2008;1:243–6.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Cundy TP, Marcus HJ, Hughes-Hallett A, Khurana S, Darzi A. Robotic surgery in children: adopt now, await, or dismiss? Pediatr Surg Int. 2015;31:1119–25.

    CrossRef  PubMed  Google Scholar 

  10. Nezhat C, Lakhi N. Learning experiences in robotic-assisted laparoscopic surgery. Best Pract Res Clin Obstet Gynaecol. 2015;35:20–9. pii: S1521-6934(15)00221-7

    CrossRef  PubMed  Google Scholar 

  11. Catchpole K, Perkins C, Bresee C, et al. Safety, efficiency and learning curves in robotic surgery: a human factors analysis. Surg Endosc. 2015;30(9):3749–61.

    CrossRef  PubMed  Google Scholar 

  12. Higuchi TT, Gettman MT. Robotic instrumentation, personnel and operating room. In: Li-Ming S, editor. Setup Atlas of robotic urologic surgery. Current clinical urology. NY: Humana Press; 2011. p. 15–30.

    CrossRef  Google Scholar 

  13. Narula VK, Melvin SM. Robotic surgical systems. In: Patel VR, editor. Robotic urologic surgery. London: Springer-Verlag; 2007. p. 5–1.

    CrossRef  Google Scholar 

  14. Bhandari A, Hemal A, Menon M. Instrumentation, sterilization, and preparation of robot. Indian J Urol. 2005;21:83–5.

    CrossRef  Google Scholar 

  15. Szold A, Bergamaschi R, Broeders I, Dankelman J, Forgione A, Langø T, et al. European Association of Endoscopic Surgeons (EAES) consensus statement on the use of robotics in general surgery. Surg Endosc. 2015;29:253–88.

    CrossRef  PubMed  Google Scholar 

  16. Pelizzo G, Nakib G, Romano P, Avolio L, Mencherini S, Zambaiti E, et al. Five millimetre-instruments in paediatric robotic surgery: advantages and shortcomings. Minim Invasive Ther Allied Technol. 2015;24:148–53.

    CrossRef  PubMed  Google Scholar 

  17. Nakib G, Calcaterra V, Scorletti F, Romano P, Goruppi I, Mencherini S, et al. Robotic assisted surgery in pediatric gynecology: promising innovation in mini invasive surgical procedures. J Pediatr Adolesc Gynecol. 2013;26:e5–7.

    CrossRef  PubMed  Google Scholar 

  18. Ahn N, Signor G, Singh TP, Stain S, Whyte C. Robotic single- and multisite cholecystectomy in children. J Laparoendosc Adv Surg Tech A. 2015;25:1033–5.

    CrossRef  PubMed  Google Scholar 

  19. Jones VS. Robotic-assisted single-site cholecystectomy in children. J Pediatr Surg. 2015;50:1842–5.

    CrossRef  PubMed  Google Scholar 

  20. Morelli L, Guadagni S, Di Franco G, Palmeri M, Di Candio G, Mosca F. Da Vinci single site© surgical platform in clinical practice: a systematic review. Int J Med Robot. 2015;12(4):724–34. doi:10.1002/rcs.1713.

    CrossRef  PubMed  Google Scholar 

  21. Meehan JJ. Robotic surgery in small children: is there room for this? J Laparoendosc Adv Surg Tech. 2009;19:707–12.

    CrossRef  Google Scholar 

  22. Chang C, Steinberg Z, Shah A, Gundeti MS. Patient positioning and port placement for robot-assisted surgery. J Endourol. 2014;28:631–8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Hortman C, Chung S. Positioning considerations in robotic surgery. AORN J. 2015;102:434–9.

    CrossRef  PubMed  Google Scholar 

  24. Gettman MT, Blute ML, Peschel R, Bartsch G. Current status of robotics in urologic laparoscopy. Eur Urol. 2003;43:106–12.

    CrossRef  PubMed  Google Scholar 

  25. Gettman MT, Cadeddu JA. Robotics in urologic surgery. In: Graham SD, Keane TE, Glenn JF, editors. Glenn’s urologic surgery. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 1027–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Pelizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pelizzo, G. (2017). Operating Room Setting and Robotic Instrumentation. In: Mattioli, G., Petralia, P. (eds) Pediatric Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-41863-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41863-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41862-9

  • Online ISBN: 978-3-319-41863-6

  • eBook Packages: MedicineMedicine (R0)