Revised Phylogeny of Extant Xiphosurans (Horseshoe Crabs)

  • B. Akbar JohnEmail author
  • Hassan I. Sheikh
  • K. C. A. Jalal
  • K. Zaleha
  • B. Y. Kamaruzzaman


An attempt was made to revise the molecular phylogeny of extant xiphosurans (Horseshoe crabs) using universal barcode gene cytochrome oxidase C subunit 1. All four extant horseshoe crab species namely Limulus polyphemus (American horseshoe crab), Tachypleus gigas, T. tridentatus and Carcinoscorpius rotundicauda (Asian conspecifics) together with predicted ancestral lineages (insects, scorpions and common crabs) were considered for phylogram construction using distance matrix methods. Genetic distance (GD) data analysis revealed the distant genetic relatedness of L. polyphemus with Asian conspecifics. More interestingly, the monophyletic origin of Tachypleus gigas and Tachypleus tridentatus was quite evident in the phylogram which other molecular markers failed to address. Close genetic relatedness of horseshoe crabs with insects showed that they might have evolved from ancient aquatic insects. The efficiency of cytochrome oxydase C subunit 1 gene in species level identification among the horseshoe crab genome was clear in both the phylogram together with the precise identification of the differential developmental stages to the species level.


Horseshoe crabs Living fossil Xiphosuran Genetic lineage Malaysia 


  1. Ajmal Khan S, Lyla PS, Akbar John B, Prasanna Kumar C, Murugan S, Jalal KCA (2010) DNA barcoding of Stolephorus indicus, Stolephorus commersonnii and Terapon jarbua of Parangipettai coastal waters. Biotechnology 9:373–377CrossRefGoogle Scholar
  2. Akbar John B, Kamaruzzaman BY, Jalal KCA, Zaleha K (2011) Hydrology of the horseshoe crab nesting grounds at Pahang coast, Malaysia. Orient J Chem 27(4):1475–1483Google Scholar
  3. Akbar John B, Kamaruzzaman BY, Jalal KCA, Zaleha K (2012) Sediment profiling of the nesting grounds of horseshoe crabs at east peninsular Malaysia. Int J Biol 4(2):159–165Google Scholar
  4. Akbar John B, Prasanna kumar C, Lyla PS, Ajmal Khan S, Jalal KCA (2010) DNA barcoding of lates calcarifer (Bloch 1970). Res J Biol Sci 5:414–419CrossRefGoogle Scholar
  5. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkCrossRefGoogle Scholar
  6. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18(4):225–239PubMedCrossRefGoogle Scholar
  7. Chiu HMC, Morton B (2003) The morphological differentiation of two horseshoe crab species, Tachypleus tridentatus and Carcinoscorpius rotundicauda (Xiphosura), in Hong Kong with a regional Asian comparison. J Nat Hist 37(19):2369–2382CrossRefGoogle Scholar
  8. Curtis SE, Clegg MT (1984) Molecular evolution of chloroplast DNA sequences. Mol Biol Evol 1(4):291–301PubMedGoogle Scholar
  9. Fisher DC (1984) The Xiphosurida: archetypes of bradytely. In: Eldredge N, Stanley SM (eds) Living fossils. Springer, New York, pp 196–213CrossRefGoogle Scholar
  10. Gojobori T, Li WH, Graur D (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18(5):360–369PubMedCrossRefGoogle Scholar
  11. Graur D, Li WH (2000) Fundamentals of molecular evolution. Sinauer, SunderlandGoogle Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  13. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B Biol Sci 270(1512):313–321CrossRefGoogle Scholar
  14. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101(41):14812–14817PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hickerson MJ, Cunningham CW (2000) Dramatic mitochondrial gene rearrangements in the hermit crab Pagurus longicarpus (Crustacea, Anomura). Mol Biol Evol 17(4):639–644PubMedCrossRefGoogle Scholar
  16. Kamaruzzaman BY, John BA, Zaleha K, Jalal KCA (2011) Molecular phylogeny of horseshoe crab. Asian J Biotechnol 3(3):302–309CrossRefGoogle Scholar
  17. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  18. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948PubMedCrossRefGoogle Scholar
  19. Mikkelsen T (1988) The secret in the blue blood. Science Press, BeijingGoogle Scholar
  20. Miyazaki JI, Sekiguchi K, Hirabayashi T (1987) Application of an improved method of two-dimensional electrophoresis to the systematic study of horseshoe crabs. Biol Bull 172(2):212–224CrossRefGoogle Scholar
  21. MuÑOz J, GÓMez A, Green AJ, Figuerola J, Amat F, Rico C (2008) Phylogeography and local endemism of the native Mediterranean brine shrimp Artemia salina (Branchiopoda: Anostraca). Mol Ecol 17(13):3160–3177PubMedCrossRefGoogle Scholar
  22. Obst M, Faurby S, Bussarawit S, Funch P (2012) Molecular phylogeny of extant horseshoe crabs (Xiphosura, Limulidae) indicates Paleogene diversification of Asian species. Mol Phylogeny Evol 62(1):21–26CrossRefGoogle Scholar
  23. Pavlicek T, Mienis HK, Raz S, Hassid V, Rubenyan A, Nevo E (2008) Gastropod biodiversity at the evolution canyon microsite, lower Nahal Oren, Mount Carmel, Israel. Biol J Linn Soc 93:147–155CrossRefGoogle Scholar
  24. Prasanna Kumar C, Akbar John B, Ajmal Khan S, Lyla PS, Murugan S, Rozihan M, Jalal KCA (2011) Efficiency of universal barcode gene (Coxi) on morphologically cryptic mugilidae fishes delineation. Trends Appl Sci Res 6:1028–1036CrossRefGoogle Scholar
  25. Raz S, Retzkin S, Pavlíček T, Hoffman A, Kimchi H, Zehavi D, Nevo E (2009) Scorpion biodiversity and interslope divergence at “evolution canyon”, lower Nahal Oren microsite, Mt. Carmel, Israel. PLoS ONE 4(4):e5214PubMedPubMedCentralCrossRefGoogle Scholar
  26. Rosenberg MS, Subramanian S, Kumar S (2003) Patterns of transitional mutation biases within and among mammalian genomes. Mol Biol Evol 20(6):988–993PubMedCrossRefGoogle Scholar
  27. Rudkin DM, Young GA (2009) Horseshoe crabs—an ancient ancestry revealed. In: Tanacredi JT, Botton ML, Smith DR (eds) Biology and conservation of horseshoe crabs. Springer, US, pp 25–44CrossRefGoogle Scholar
  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evo 4:406–425Google Scholar
  29. Sekiguchi K, Nakamura K (1979) Ecology of the extant horseshoe crabs. In: Cohen E (ed) Biomedical applications of the horseshoe crab (Limulidae). Alan R. Liss, New York, pp 37–45Google Scholar
  30. Sekiguchi K, Sugita H (1980) Systematics and hybridization in the four living species of horseshoe crabs. Evolution 34(4):712–718CrossRefGoogle Scholar
  31. Shishikura F, Nakamura S, Takahashi K, Sekiguchi K (1982) Horseshoe crab phylogeny based on amino acid sequences of the fibrino-peptide-like peptide C. J Exp Zool 223(1):89–91CrossRefGoogle Scholar
  32. Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zoolog J Linn Soc 150:221–265CrossRefGoogle Scholar
  33. Shuster CN (1962) Serological correspondence among horseshoe crabs (Limulidae). Zoologica 47:1–8Google Scholar
  34. Siemion IZ, Przemyslaw JS (1994) The informational context of the third base in amino acid codons. Biosystems 33:139–148PubMedCrossRefGoogle Scholar
  35. Simmons MP, Zhang L-B, Webb CT, Reeves A (2006) How can third codon positions outperform first and second codon positions in phylogenetic inference? An empirical example from the seed plants. Syst Biol 55(2):245–258PubMedCrossRefGoogle Scholar
  36. Song S, Shao R, Atwell R, Barker S, Vankan D (2011) Phylogenetic and phylogeographic relationships in Ixodes holocyclus and Ixodes cornuatus (Acari: Ixodidae) inferred from COX1 and ITS2 sequences. Int J Parasitol 41(8):871–880PubMedCrossRefGoogle Scholar
  37. Srimal S, Miyata T, Kawabata S-I, Miyata T, Iwanaga S (1985) The complete amino acid sequence of coagulogen isolated from Southeast Asian horseshoe crab, Carcinoscorpius rotundicauda. J Biochem 98(2):305–318PubMedGoogle Scholar
  38. Sugita H (1988) Immunological comparisons of hemocyanins and their phylogenetic implications. In: Sekiguchi K (ed) Biology of horseshoe crabs. Science House, Tokyo, pp 315–334Google Scholar
  39. Sugita H, Shishikura F (1995) A case of orthologous sequences of hemocyanin subunits for an evolutionary study of horseshoe crabs: amino acid sequence comparison of immunologically identical subunits of Carcinoscorpius rotundicauda and Tachypleus tridentatus. Zoolog Sci 12(5):661–667PubMedCrossRefGoogle Scholar
  40. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599PubMedCrossRefGoogle Scholar
  41. Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585–595Google Scholar
  42. Wakeley J (1996) The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends Ecol Evol 11:158–163CrossRefGoogle Scholar
  43. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc B Biol Sci 360(1462):1847–1857CrossRefGoogle Scholar
  44. Xia X (2000) Phylogenetic relationship among horseshoe crab species: effect of substitution models on phylogenetic analyses. Syst Biol 49(1):87–100PubMedCrossRefGoogle Scholar
  45. Yamasaki T, Makioka T, Saito J (1988) Morphology. In: Sekiguchi K (ed) Bioligy of horseshoe crabs. Tokyo, Science House Co. Ltd., pp 69–132Google Scholar
  46. Zaleha K, Kamaruzzaman BY, Akbar John B, Ong MC (2010) Cd, Cu and Pb concentration levels in horseshoe crab nesting grounds of Pahang coast, Malaysia. J Biol Sci 10(8):790–794CrossRefGoogle Scholar
  47. Zhang AB, Kubota K, Takami Y, Kim JL, Kim JK, Sota T (2005) Species status and phylogeography of two closely related Coptolabrus species (Coleoptera: Carabidae) in South Korea inferred from mitochondrial and nuclear gene sequences. Mol Ecol 14(12):3823–3841PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • B. Akbar John
    • 1
    Email author
  • Hassan I. Sheikh
    • 2
  • K. C. A. Jalal
    • 3
  • K. Zaleha
    • 1
  • B. Y. Kamaruzzaman
    • 3
  1. 1.INOCEM Research Station (IRS)Kulliyyah of Science, International Islamic University MalaysiaKuantanMalaysia
  2. 2.Department of BiotechnologyKulliyyah of Science, International Islamic University MalaysiaKuantanMalaysia
  3. 3.Department of Marine ScienceKulliyyah of Science, International Islamic University MalaysiaKuantanMalaysia

Personalised recommendations