Morphological and COI Sequence Based Characterisation of Marine Polychaete Species from Great Nicobar Island, India

  • V. SekarEmail author
  • R. Rajasekaran
  • C. Prasannakumar
  • R. Sankar
  • R. Sridhar
  • V. Sachithanandam


DNA barcoding has proved to be a powerful alternative method to traditional morphological approaches, allowing to complement identification techniques for living organisms. In this study we assess intraspecific and interspecific genetic divergence Among the 6 genera marine polychaetes from Great Nicobar Island of Souther part of the Andaman and Nicobar Island. The present study results suggested that high level of interspecific genetic variation was observed between Lysidice collaris and Terebella ehrenbergi (0.727). The minimum genetic distance (0.316) was observed between genera Phyllodoce fristedti and Ceratonereis mirabilis. Morphological identification of the polychaetes in this study was supported by the molecular data, as shown by the congruence and high similarity between the sequences produced in the present study and those available in GenBank. This study presents the first information on DNA barcoding for polychaetes species in the Great Nicobar Island, and it establishes the effectiveness of DNA barcoding for identification of marine polychaetes species from Andaman and Nicobar Island, thus making it available to a much broader range of scientists.


Polychaetes Cytochrome c oxidase subunit I Great Nicobar Island Andaman and Nicobar Island 


  1. Ajmal Khan S, Lyla PS, Akbar John B, Prasanna Kumar C, Murugan S (2011) Identifying marine fin fishes using DNA barcodes. Curr Sci 101:9–12Google Scholar
  2. Ajmal Khan S, Lyla PS, Akbar Jhon B, Prasanna Kumar C, Murugan S, Jala KCA (2010) DNA, barcoding of Stolephorus indicus and Stolephorus commersonni. Biotechnology 9(3):373–377CrossRefGoogle Scholar
  3. Akbar John B, Prasannakuma C, Lyla PS, Ajmal Khan S, Jalal KCA (2010) DNA barcoding of Lates calcarifer (Bloch, 1970). Res J Biol Sci 5(6):414–419CrossRefGoogle Scholar
  4. Ball SL, Hebert PDN, Burian SK, Webb JM (2005) Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. J N Am Benthol Soc 24(3):508–524CrossRefGoogle Scholar
  5. Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Confronting the coral reef crisis. Nature 429:827–833CrossRefPubMedGoogle Scholar
  6. Bely AE, Wray GA (2004) Molecular phylogeny of naidid worms (Annelida: Clitellata) based on cytochrome oxidase I. Mol Phylogenet Evol 30:50–63CrossRefPubMedGoogle Scholar
  7. Blaxter ML (2004). The promise of DNA taxonomy. Philos Trans R Soc Lond Ser B Biol Sci. 359:669–679Google Scholar
  8. Blaxter M, Elsworth B, Daub J (2004) DNA taxonomy of a neglected animal phylum: an unexpected diversity of tardigrades. Proc Roy Soc Lond Biol Sci 271:S189–S192CrossRefGoogle Scholar
  9. Bleidorn C, Podsiadlowski L, Bartolomaeus T (2006) The complete mitochondrial genome of the orbiniid polychaete Orbinia latreillii (Annelida Orbiniidae)—A novel gene order for Annelida and implications for annelid phylogeny. Gene 370:96–103Google Scholar
  10. Bleidorn C, Vogt L, Bartolomaeus T (2003) New insights into polychaete phylogeny (Annelida) inferred from 18S rDNA sequences. Mol Phylogenet Evol 29:279–288CrossRefPubMedGoogle Scholar
  11. Breton S, Dufresne F, Desrosiers G, Blier PU (2003) Population structure of two northern hemisphere polychaetes, Neanthes virens and Hediste diversicolor (Nereididae) with different life history traits. Mar Biol 142:707–715Google Scholar
  12. Brett CD (2006) Testing the effectiveness of the mt DNA Cytochrome c oxidase subunit 1 (COI) gene locus for identifying species of Polychaete worm (Polychaeta: Annelida) in New ZealandGoogle Scholar
  13. Brower AVZ (2006) Problems with DNA barcodes for species delimitation: “ten species” of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Syst Biol 4:127–132Google Scholar
  14. Brown S, Rouse G, Hutchings P, Colgan D (1999) Assessing the usefulness of histone H3, U2 snRNA and 28rDNA in analyses of polychaete relationships. Aust J Zool 47:499–516CrossRefGoogle Scholar
  15. Canales-Aguirre CB, Rozbaczylo N, Hernandez CE (2011) Genetic identification of benthic polychaetes in a biodiversity hotspot in the southeast Pacific. Revista de Biologia Marina y Oceanografia 46:89–94Google Scholar
  16. Carr CM, Hardy SM, Brown TM, Macdonald TA, Hebert PDN (2011) A Tri-Oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes. PLoS ONE 6(7):222–232CrossRefGoogle Scholar
  17. Chotteau LA, Laudet V, Flourens A, Begue A, Leprince D, Fontaine F (1994) Identification of two ets related genes in a marine worm, the polychaete annelid Nereis diversicolor. FEBS Lett 354:62–66CrossRefGoogle Scholar
  18. Chaudhri P, Das S (2001) Statistical analysis of large DNA sequences using distribution of DNA words. Curr Sci 80(9):1161–1166Google Scholar
  19. Christer E, Prestegaard T, Mari K (2000) Phylogenetic analysis of Tubificidae (Annelida: Clitellata) based on 18S rDNA sequences. Mol Phylogenet Evol 15(3):381–389CrossRefGoogle Scholar
  20. Day JH (1962) Polychaeta from several localities in the Western Indian Ocean. Proc zool Soc Lond 139(4):627–656Google Scholar
  21. Day JH (1967) A monograph on the Polychaeta of Southern Africa. Pts I and II Brit Mus Nat Hist 656:1–878Google Scholar
  22. Delle Chiaje S (1825) Memorie sulla storia e notomia degli animali senza vertebre del regno di Napoli. Naples 3:1–232Google Scholar
  23. Derycke S, Remerie T, Vierstraete A, Backeljau T, Vanfleteren J, Vincx M, Moens T (2005) Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Mar Ecol Prog Ser 300:91–103CrossRefGoogle Scholar
  24. Eklof J (2010) Taxonomy and phylogeny of polychaetes. Intellecta Infolog, Goteborg, 33 ppGoogle Scholar
  25. Fauchald K (1977) The Polychaete worms. Definition and keys to the orders, families and genera. Nat His Mus Ang Sci Ser 28:1–188Google Scholar
  26. Fauvel P (1927) Polychetes sendentaries. Addenda aux Errantes, Archiannelida, Myzoztomaires. Fauna Fr 16:1–494Google Scholar
  27. Fauvel P (1932) Polychaeta of Indian Museum. Calcutta Mem Ind Mus 12:1–262Google Scholar
  28. Fauvel P (1953) Annelida Polychaeta. In: The Fauna of India including Pakistan, Ceylon, Burma and Malaya. The Indian Press Ltd, Allahabad, 507 ppGoogle Scholar
  29. Fauvel P (1930) The littoral fauna of Krusadai Island in the Gulf of Mannar. Bull Madras Gov Mus (New Series—Natural History Section) I(2):1–72Google Scholar
  30. Fernando OJ, Rajasekaran R (2007) A new species of Namanereidinae: Namalycastis glasby sp. nov. from Indian waters. J Bombay Nat Hist Soc 104:1Google Scholar
  31. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Bio Biotechnol 3(5):294–299Google Scholar
  32. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850CrossRefPubMedGoogle Scholar
  33. Gibson G, Paterson IG, Taylor H, Woolridge B (1999) Molecular and morphological evidence of a single species, Boccardia proboscidea (Polychaeta: Spionidae), with multiple development modes. Mar Biol 134:743–751CrossRefGoogle Scholar
  34. Gravier C (1900) Contribution to the study of polychaete annelids. I partie. Nouv Archs Mus Hist Nat 3:137–282Google Scholar
  35. Gravier C (1901) Contribution to the study of polychaete annilides Red Sea. Nouv Arch Mus Hist Nat Paris (Ser. 4) 3:147–268Google Scholar
  36. Grube AE (1870) Beschreibung neuer oder wenig beakannten von Heron Ehrenberg gesammalter Anneliden aus den Rothen Meeres. Mber Akad Wiss Berl 1870:484–521Google Scholar
  37. Grube AE (1876) Bemerkungen uber die Familie der Aphroditeen, (Gruppe Polynoina, Acoeta, Polylepidea). Jber Schles Ges Vaterl Kult 53:46–72Google Scholar
  38. Halanych KM, Janosik AM (2006) A review of molecular markers used for Annelid phylogenetics. Integr Comp Biol 46:533–543CrossRefPubMedGoogle Scholar
  39. Hebert PDN, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–322CrossRefGoogle Scholar
  40. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004a) Identification of birds through DNA Barcodes. PLoS Biology 2(10):1657–1663CrossRefGoogle Scholar
  41. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004b) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hebert PDN, Barrett RDH (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491CrossRefGoogle Scholar
  43. Hebert PDN, Cywinska AA, Ball SL, deWaard JR (2010) Biological identifications through DNA barcodes. Proc R Soc Lond 270:313–321CrossRefGoogle Scholar
  44. Hogg ID, Hebert PDN (2004) Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Can J Zool 82(5):749–754CrossRefGoogle Scholar
  45. Hopkins GW, Freckleton RP (2002) Declines in the numbers of amateur and professional taxonomists: implications for conservation. Ani Cons 5:245–249CrossRefGoogle Scholar
  46. Hutchings P (1998) Biodiversity and functioning of polychaetes in benthic sediments. Biodivers Conserv 7:1133–1145CrossRefGoogle Scholar
  47. Kinberg JGH (1866) Annulata nova. Ofvers K Vetensk Akad Forh 22:167–169, 239–258Google Scholar
  48. Knowlton N (2001) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90CrossRefGoogle Scholar
  49. Kojima S (1998) Paraphyletic status of Polychaeta suggested by phylogenetic analysis based on the amino acid sequences of elongation factor-1 alpha. Mol Phylogenet Evol 9:255–261CrossRefPubMedGoogle Scholar
  50. Lambert DM, Baker A, Huynen L, Haddrath O, Hebert PDN, Millar CD (2005) Is a large-scale DNA-based inventory of ancient life possible? J Hered 96(3):279–284CrossRefPubMedGoogle Scholar
  51. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948CrossRefPubMedGoogle Scholar
  52. Lakra WS, Verma MS, Goswami M, Lal KK, Mohindra V, Punia P, Gopalakrishnan A, Singh KV, Ward RD, Hebert P (2009) DNA barcoding Indian marine fishes. Mol Ecol Resour 11(1):60–71CrossRefGoogle Scholar
  53. Leasi F, Todaro MA (2009) Meiofaunal cryptic species revealed by confocal microscopy: the case of Xenotrichula intermedia (Gastrotricha). Mar Biol 156:1335–1346CrossRefGoogle Scholar
  54. Manchenko GP, Radashevsky VI (2002) Genetic divergences between two sibling sympatric Dipolydora species (Polychaeta: Spionidae) from the Sea of Japan, and a new species description. J Mar Biol Assoc UK 82:193–199CrossRefGoogle Scholar
  55. Maltagliati F, Peru AP, Casu M, Rossi F, Lardicci C, Curini-Galletti M, Castelli A (2000) Is Syllis gracilis (Polychaeta: Syllidae) a species complex? An allozyme perspective. Mar Biol 136:871–879CrossRefGoogle Scholar
  56. Maltagliati F, Casu M, Castelli A (2004) Morphological and genetic evidence supports the existence of two species in the genus Ophelia (Annelida, Polychaeta) from the Western Mediterranean. Biol J Linn Soc 83:101–113Google Scholar
  57. Maturana CS, Moreno RA, Labra FA (2011) DNA barcoding of marine polychaetes species of southern Patagonian fjords. Revista De Biología Mar Oceano 46:35–42CrossRefGoogle Scholar
  58. McHugh D (2000) Molecular phylogeny of the Annelida. Can J Zool 78:1873–1884CrossRefGoogle Scholar
  59. Monaghan MT, Balke M, Ryan-Gregory T, Vogler AP (2005) DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philos Trans R Soc Lond B 360:1925–1933CrossRefGoogle Scholar
  60. Meyer M, Briggs AW, Maricic T, Hober B, Hoffner B, Krause J, Weihmann A, Paabo S, Hofreiter M (2008) From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing. Nucleic Acids Res 36:e5CrossRefPubMedGoogle Scholar
  61. Misra A, Chakraborty RK (1991) Polychaetes from Lakshadweep. Fauna of Lakshadweep. Zool Surv India (State Fauna Series) 2:137–165Google Scholar
  62. Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2(10):1529–1531CrossRefGoogle Scholar
  63. Muller OF (1806) Zoologia Danica Seu Animalium Daniae et Norvegiae rariorum ac minus notorum, Descriptiones et Historia. Havniae 160 ppGoogle Scholar
  64. Novacek M, Cleland EE (2001) The current biodiversity extinction event: scenarios for mitigation and recovery. Proc Natl Acad Sci USA 98:5466–5470CrossRefPubMedCentralGoogle Scholar
  65. Nygren A, Pleijel F (2010) From one to ten in a single stroke—resolving the European Eumida sanguinea (Phyllodocidae: Annelida) species complex. Mol Phyl Evol 58:132–141CrossRefGoogle Scholar
  66. Nylander JAA, Erseus C, Källersjo M (1999) A test of monophyly of the gutless Phallodrilinae (Oligochaeta, Tubificidae) and the use of a 573-bp region of the mitochondrial cytochrome oxidase I gene in analysis of annelid phylogeny. Zool Scr 28:305–313CrossRefGoogle Scholar
  67. Olivares RA, Fleeger JW, Foltz DW (2001) Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Mol Biol Evol 18:1088–1102CrossRefGoogle Scholar
  68. Pop DD, Zdrenghea LM, Procociuc A Popal (2007) Gene polymorphism of angiotensin-converting enzyme and angiotensin II type 1 receptor in patients with congestive heart failure. Rome J Intern Med 45:349–354Google Scholar
  69. Prasannakumar C, Akbar John B, Khan SA, Lyla PS, Murugan S, Rozihan M, Jalal KCA (2011) Efficiency of Universal Barcode Gene (Goxi) on morphologically cryptic mugillidae fishes delineation. Trends Appl Sci Res 4:1819–3579Google Scholar
  70. Parulekar AH (1971) Polychaete from Maharashtra and Goa. J Bombay Nat Hist Soc 68(3):726–749Google Scholar
  71. Persis M, Reddy ACS, Rao LM, Khedkar GD, Ravinder K, Nasruddin K (2009) CO1 (Cytochrome oxidase–I) sequence based studies of Carangid fishes from Kakinada coast. India Mol Biol Rep 36:1733–1740CrossRefPubMedGoogle Scholar
  72. Radulovici AE, Archambault P, Dufresne F (2010) DNA barcodes for marine biodiversity: moving fast forward? (February). Diversity 2(4):450–472CrossRefGoogle Scholar
  73. Rao CAN (2001) Polychaete fauna of the Godavari Estuary Zool Surv India Esturine Ecosystem Series 4:21–32Google Scholar
  74. Ratnasingham S, Hebert PDN (2007) The barcode of life data system. Mol Ecol Notes 7:355–364.
  75. Rao CAN, Soota TD (1977) On the occurrence of Poecilochaetus serpens Allen (Polychaeta: Poecilochaetidae) in the Andaman and Nicobar Islands. Newsl Zool Surv India 3(6):346–347Google Scholar
  76. Rota E, Martin P, Erseus C (2001) Soil-dwelling polychaetes: enigmatic as ever? Some hints on their phylogenetic relationship as suggested by a maximum parsimony analysis of 18S rRNA gene sequences. Contrib Zool 70:127–38Google Scholar
  77. Rouse GW, Fauchald K (1997) Cladistics and polychaetes. Zoolog Scr 26:139–204CrossRefGoogle Scholar
  78. Sachithanandam V, Mohan PM, Muruganandam N, Chaaithanya IK, Dhivya P, Baskaran R (2012) DNA barcoding, phylogenetic study of Epinephelus spp. from Andaman coastal region, India. Indian J Geo-Mar Sci 41(3):203–211Google Scholar
  79. Saccone C, DeCarla G, Gissi C, Pesole G, Reynes A (1999) Evolutionary genomics in the Metazoa: the mitochondrial DNA as a model system. Gene 238:195–210CrossRefPubMedGoogle Scholar
  80. Samidurai S (2010) Studies on macrobenthos of different mangrove habitats of Tamil Nadu, India: ecology, molecular taxonomy and mosquitocidal properties. Ph.D. thesis. Annamalai University, p. 174Google Scholar
  81. Satheeshkumar P, Jagadeesan L (2010) Phylogenetic position and genetic diversity of Neridae—polychaeta based on molecular data from 16S r RNA sequences. Middle East J Sci Res 6(6):550–555Google Scholar
  82. Sato OW (1999) Polydorid species (Polychaeta: Spionidae) in Japan, with descriptions of morphology, ecology and burrow structure. Boring Species J Mar Biolo Assoc UK 79:831–848CrossRefGoogle Scholar
  83. Scaps P, Rouabadh A, Lepretre A (2000) Morphological and biochemical evidence that Perinereis cultrifera (Polychaeta: Nereididae) is a complex of species. J Mar Biol Assoc UK 80:735–736Google Scholar
  84. Schmidt WWH (2003) Cosmopolitan versus cryptic meiofaunal polychaete species: an approach to a molecular taxonomy. Helgol Mar Res 57:1–6Google Scholar
  85. Kvist S, Sarkar IN, Erseus C (2010) Genetic variation and phylogeny of the cosmopolitan marine genus Tubificoides (Annelida: Clitellata: Naididae: Tubificinae) J Mol Evol 57:687–702Google Scholar
  86. Siddall ME, Budinoff RB (2005) DNA-barcoding evidence for widespread introductions of a leech from South American Helobdella triserialis complex. Conserv Genet 6:467–472CrossRefGoogle Scholar
  87. Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land. Antarctica Mol Ecol 12:2357–2369CrossRefPubMedGoogle Scholar
  88. Struck TH, Westheide W, Purschke G (2002) Progenesis in Eunicida (Polychaeta: Annelida) separate evolutionary events? Evidence from molecular data. Molec Phylogen Evol 25:190–199CrossRefGoogle Scholar
  89. Tampi PRS, Rangarajan K (1964) Some polychaetous annelids from the Andaman waters. J Mar Biol Ass India 6(1):98–123Google Scholar
  90. Timm J, Figiel M, Kochzius M (2008) Contrasting patterns in species boundaries and evolution of anemonefishes (Amphiprioninae, Pomacentridae) in the centre of marine biodiversity. Mol Phyl Evol 49:268–276CrossRefGoogle Scholar
  91. Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologist. Trends Ecol Evol 24:110–117CrossRefPubMedGoogle Scholar
  92. Ward RD (2009) DNA barcode divergence among species and genera of birds and fishes. Mol Ecol Resour 9:1077–1085CrossRefPubMedGoogle Scholar
  93. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Phil Trans R Soc B 360:1847–1857CrossRefPubMedPubMedCentralGoogle Scholar
  94. Westheide W, McHugh D, Purschke G, Rouse GW (1999) Systematization of the Annelida: different approaches. Hydrobiologia 402:291–307CrossRefGoogle Scholar
  95. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • V. Sekar
    • 1
    • 3
    Email author
  • R. Rajasekaran
    • 1
  • C. Prasannakumar
    • 1
  • R. Sankar
    • 1
    • 3
  • R. Sridhar
    • 3
  • V. Sachithanandam
    • 2
    • 3
  1. 1.Faculty of Marine Sciences, Centre of Advanced in Marine BiologyAnnamalai UniversityChidambaramIndia
  2. 2.Department of Ocean Studies and Marine BiologyPondicherry UniversityAndaman and Nicobar IslandIndia
  3. 3.National Centre for Sustainable Coastal ManagementMinistry of Environment, Forest and Climate ChangeChennaiIndia

Personalised recommendations