DNA Barcoding in Phytoplankton and Other Algae in Marine Ecosystem: An Effective Tool for Biodiversity Assessment

  • Farhina PashaEmail author


Marine biodiversity is a valuable gift of nature, as the marine environment is exceptionally complicated, diverse and of utmost economic value. There is a desperate need to evaluate and protect this treasure because of its multi facet uses and its richness in species composition. Biodiversity protection particularly emphasizes on the ability of quantifying and tracking changes in the marine ecosystem. Phytoplankton and Algal biodiversity too comes under this category because of their diverse species population, vast habitat and most of them having microscopic structure. Thereby both marine phytoplankton and algae play a significant role in marine biodiversity and their taxonomic identification remain a big challenge. With all the merits and limitations of DNA barcoding and amongst the furious debate of researchers in context of its comparison with alpha taxonomic identification, DNA barcoding certainly is a promising tool of future in the field of marine species identification, biodiversity assessment and conservation.


DNA barcoding Marine phytoplankton Biodiversity Marine algae Species identification Cox1 rRNA 



The authors would like to acknowledge, University of Tabuk, Tabuk, Saudi Arabia. The author would also like to thanks Department of Biology, Faculty of Sciences, Saudi Digital Library and University Library providing the facility for literature survey and collection.


  1. Ahmad I, Fatma Z, Yazdani S, Kumar S (2013) DNA barcode and lipid analysis of new marine algae potential for biofuel. Algal Res 2(1):10–15CrossRefGoogle Scholar
  2. Alemzadeh E, Haddad R, Ahmadi AR (2014) Phytoplanktons and DNA barcoding: characterization and molecular analysis of phytoplanktons on the Persian Gulf. Iran J Microbiol 6(4):296–302Google Scholar
  3. Ali MA, Gyulai G, Hidvegi N, Kerti B, Al Hemaid F, Pandey A et al (2014) The changing epitome of species identification—DNA barcoding. Saudi J Biol Sci 21(3):204–231CrossRefGoogle Scholar
  4. An C, Kuda T, Yazaki T, Takahashi H, Kimura B (2013) FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat cecal microbiotas. Appl Environ Microbiol 79(3):860–866. doi: 10.1128/AEM.02354-12 Google Scholar
  5. Balakirev ES, Krupnova TN, Ayala FJ (2012) DNA variation in the phenotypically-diverse brown alga Saccharina japonica. BMC Plant Biol 12:108. doi: 10.1186/1471-2229-12-108 Google Scholar
  6. Boyce D, Lewis M, Worm B (2010) Global phytoplankton decline over the past century. Nature 466(7306):591–596PubMedCrossRefGoogle Scholar
  7. Briggs J (1994) Species diversity: land and sea compared. Syst Biol 43(1):130CrossRefGoogle Scholar
  8. Carstensen J, Heiskanen A (2007) Phytoplankton responses to nutrient status: application of a screening method to the northern Baltic sea. Mar Ecol Prog Ser 336:29–42CrossRefGoogle Scholar
  9. Clarkston B, Saunders G (2010) A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthoratimburtonii specie. Botany 88(2):119–131CrossRefGoogle Scholar
  10. Dybern BI, Hansen HP (1989) Baltic Sea Patchiness Experiment (BSPE)—PEX 1986—Part 1: General report. ICES cooperative research report 163:1–10Google Scholar
  11. Ebach M, Holdrege C (2005) DNA barcoding is no substitute for taxonomy. Nature 434(7034):697PubMedCrossRefGoogle Scholar
  12. Evans K, Wortley A, Mann D (2007) An assessment of potential diatom “barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158(3):349–364PubMedCrossRefGoogle Scholar
  13. Galimberti A, De Mattia F, Losa A, Bruni I, Federici S, Casiraghi M et al (2013) DNA barcoding as a new tool for food traceability. Food Res Int 50(1):55–63CrossRefGoogle Scholar
  14. Gray J (1997) Marine biodiversity. International Maritime Organization, LondonGoogle Scholar
  15. Harper JL, Hawksworth DL (1994) Biodiversity: measurement and estimation. Philos Trans R Soc Lond Ser B Biol Sci 345(1311):5–12CrossRefGoogle Scholar
  16. Hebert P, Cywinska A, Ball S, de Waard J (2003) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270(1512):313–321CrossRefGoogle Scholar
  17. Hirakawa Y, Howe A, James ER, Keeling PJ (2011) Morphological diversity between culture strains of a chlorarachniophyte, Lotharella globosa. PLoS One 6(8):e23193. doi: 10.1371/journal.pone.0023193 Google Scholar
  18. Kim MS, Kim MY, Yang Cho GY (2010) Applying DNA barcoding to Korean Gracilariaceae (Rhodophyta) Cryptogamie. Algologie 31(4):387–401Google Scholar
  19. Krug PJ, Vendetti JE, Rodriguez AK, Retana JN, Hirano YM, Trowbridge CD (2013) Integrative species delimitation in photosynthetic sea slugs reveals twenty candidate species in three nominal taxa studied for drug discovery, plastid symbiosis or biological control. Mol Phylogenet Evol 69(3):1101–1119. doi: 10.1016/j.ympev.2013.07.009 Google Scholar
  20. Lawton RJ, de Nys R, Skinner S, Paul NA (2014) Isolation and identification of oedogonium species and strains for biomass applications. PLoS One 6:9(3):e90223. doi: 10.1371/journal.pone.0090223.eCollection
  21. Lee CE (2000) Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “Populations”. Evolution 54(6):2014PubMedCrossRefGoogle Scholar
  22. Lee C, Frost B (2002) Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae). Hydrobiologia 480(1):111–128CrossRefGoogle Scholar
  23. Lefranc M, Thenot A, Lepere C, Debroas D (2005) Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol 71(10):5935–5942PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lowenstein J, Amato G, Kolokotronis S (2009) The real maccoyii: identifying tuna sushi with DNA barcodes- contrasting characteristic attributes and genetic distances. PLoS ONE 4(11):e7866PubMedPubMedCentralCrossRefGoogle Scholar
  25. Mackas D (2011) Does blending of chlorophyll data bias temporal trend? Nature 472(7342):E4–E5PubMedCrossRefGoogle Scholar
  26. Massana R (2015) Getting specific: making taxonomic and ecological sense of large sequencing data sets. Mol Ecol 24(12):2904–2906. doi: 10.1111/mec.13210 Google Scholar
  27. McQuatters-Gollop A, Reid P, Edwards M, Burkill P, Castellani C, Batten S (2011) Is there a decline in marine phytoplankton? Nature 472(7342):E6–E7PubMedCrossRefGoogle Scholar
  28. Medlin L, Lange M, Nothig E (2000) Genetic diversity in the marine phytoplankton: a review and a consideration of Antarctic phytoplankton. Antarct Sci 12(03):325–333CrossRefGoogle Scholar
  29. Medlin L, Metfies K, Mehl H, Wiltshire K, Valentin K (2006) Picoeukaryotic plankton diversity at the helgoland time series site as assessed by three molecular methods. Microb Ecol 52(1):53–71PubMedCrossRefGoogle Scholar
  30. Molnar J, Gamboa R, Revenga C, Spalding M (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6(9):485–492CrossRefGoogle Scholar
  31. Pardo C, Lopez L, Peña V, Hernández-Kantún J, Le Gall L, Bárbara I, Barreiro R (2014) A multilocus species delimitation reveals a striking number of species of coralline algae forming Maerl in the OSPAR maritime area. PLoS One 11:9(8):e104073. doi: 10.1371/journal.pone.0104073.eCollection
  32. Pimentel D, Wilson C, McCullum C, Huang R, Dwen P, Flack J et al (1997) Economic and environmental benefits of biodiversity. Bioscience 47(11):747–757CrossRefGoogle Scholar
  33. Ray G, Grassle J (1991) Marine biological diversity program. Bioscience 41(7):453–457CrossRefGoogle Scholar
  34. Revilla M, Franco J, Bald J, Borja A, Laza A, Seoane S et al (2009) Assessment of the phytoplankton ecological status in the Basque coast (northern Spain) according to the European water framework directive. J Sea Res 61(1–2):60–67CrossRefGoogle Scholar
  35. Robba L, Russell S, Barker G, Brodie J (2006) Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 93(8):1101–1108PubMedCrossRefGoogle Scholar
  36. Rykaczewski R, Dunne J (2011) A measured look at ocean chlorophyll trends. Nature 472(7342):E5–E6PubMedCrossRefGoogle Scholar
  37. Rynearson T, Newton J, Armbrust E (2006) Spring bloom development, genetic variation, and population succession in the planktonic diatom Ditylum brightwellii. LimnolOceangr 51(3):1249–1261Google Scholar
  38. Samadi S, Barberousse A (2006) The tree, the network, and the species. Biol J Linn Soc 89(3):509–521CrossRefGoogle Scholar
  39. Saunders G (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos Trans R Soc B Biol Sci 360(1462):1879–1888CrossRefGoogle Scholar
  40. Saunders G (2008) A DNA barcode examination of the red algal family Dumontiaceae in Canadian waters reveals substantial cryptic species diversity. 1. The foliose Dilsea-Neodilsea complex and Weeksia. This paper is one of a selection of papers published in the Special Issue on Systematics Research. Botany 86(7):773–789Google Scholar
  41. Saunders GW, McDevit DC (2012) Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms. Methods in Mol Biol 858:207–222 doi: 10.1007/978-1-61779-591-6_10 Google Scholar
  42. Spatharis S, Tsirtsis G (2010) Ecological quality scales based on phytoplankton for the implementation of Water Framework Directive in the Eastern Mediterranean. Ecol Indic 10(4):840–847CrossRefGoogle Scholar
  43. Spatharis S, Roelke D, Dimitrakopoulos P, Kokkoris G (2011) Analyzing the (mis)behavior of Shannon index in eutrophication studies using field and simulated phytoplankton assemblages. Ecol Indic 11(2):697–703CrossRefGoogle Scholar
  44. Wheeler Q (2004) Taxonomic triage and the poverty of phylogeny. Philos Trans R S B Biol Sci 359(1444):571–583CrossRefGoogle Scholar
  45. Will K, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20(1):47–55CrossRefGoogle Scholar
  46. Zhang AB, Feng J, Ward RD, Wan P, Gao Q, Wu J, Zhao WZ (2012) A new method for species identification via protein-coding and non-coding DNA barcodes by combining machine learning with bioinformatic methods. PLoS One 7(2):e30986. doi: 10.1371/journal.pone.0030986 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Sciences, Department of BiologyUniversity of TabukTabukSaudi Arabia

Personalised recommendations